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• Introduction
• Discharge parameters
• Modified Rutherford equation analysis of the early growth phase
• M3D-C1-K analysis of the onset phase
• Validity of the results
• Conclusion

Outline
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• NTM: Neoclassical Tearing Mode
– Needs seed island to overcome small island effects [1]
– Triggers are ELMs, sawteeth, fishbones [2], pellet injection(, drift waves)

• Spontaneous NTM [3] instabilities are observed in NSTX [4]
– Implicit triggers: Ideal modes [3], classical tearing modes, three wave coupling

• Fast ions can implicitly trigger spontaneous NTM
– Kinetic neoclassical polarization current contributes to the early growth phase [4]
– Fast ions can drive ideal modes in the onset phase [5]

• TRANSP NTM module [7] is used for the analysis

Could fast ion be implicit trigger for spontaneous NTM in NSTX?

[1] Smolyakov et al, PoP 2 1581 (1995)
[2] Gude et al, NF 39 127 (1999)
[3] Fredrickson, PoP 9 548 (2002)
[4] Gerhardt et al, NF 49 032003 (2009)
[4] Cai, NF 56 126016 (2016)
[5] Liu et al, JPP 88 90580610 (2022)
[7] Poli et al, NF 58 016007 (2018)
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We are focusing on NSTX discharge #134020

• NSTX NB heated H-mode deuterium plasmas
– No explicit trigger
– Intentional beam power step down occurred at 0.70 s [1]

• MSE and SXR are essential for the analysis
– LRDFIT [2] with MSE [3] constraints is the base equilibrium
– TRANSP kick model [4] calculates the fast ion transport
– Synthetic SXR diagnostics [5] determines the island width
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Fast ion term can play a decisive role in early growth

• Measured and simulated island widths are compared
– Good agreement with fast ion term included in the simulation
– Trivial solution (w = 0) without the fast ion term
– Fast ion term spike looks important

• Fast ion reduced the polarization current in island sheath
– Rotation shear creates island sheath
– Different mobility of ions and electrons cause polarization current
– Gyromotion cancels out ion E×B drift and causes another current
– This effect can be large with fast ions
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Positive spike does not fully explain the fast ion contribution

• Fast ion term [1] has ion density gradient component
– Shares some parameters with (thermal) ion polarization current
– Ion density gradient comes into play theoretically
– Assumed island rotates in electron diamagnetic drift direction

• Spike appears in 𝐿!! at 0.62 s
– Height of the spike is clipped at 1 m to avoid numerical singularity
– It remains inconclusive as to whether fast ions play a decisive role
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Fast ion term contributes clearly when island is small
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• Island growth rates from measurement and simulation are compared
– When island is smaller than 3.5 cm, difference is < 0.02 cm/ms
– Time evolution shows that it is significant when the island is smaller
– This corresponds to the ratio ⁄∆,)-,. ∆())* < 2%
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In another case, fast ion impact is small when ∆"#$,& is small

• Fast ion term is decisive in #134020
– In #138940, fast ion term is decisive
– In #123873, fast ion term has small effect

• What does #123873 have uniquely?
– It has medium ⁄∆,)-,. ∆,)-
– It has smallest ⁄∆,)-,. ∆())*
– Found a preliminary proxy, more to follow
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Fast ion term can play a decisive role in onset albeit indirectly

• Other trigger candidates
– Three wave coupling [1]: Unlikely (no 3/2 mode)
– Classical tearing mode [2]: Possible but uncertain

• M3D-C1-K results suggest ideal mode trigger [3]
– Inputs are consistent with the rest of this presentation
– Results show growth rate that is real and finite
– Doppler shift could explain the frequency underestimation

• Fast ion pressure is 17% of total pressure
– Reduction of total pressure by 17% would lead to imaginary growth rate
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Calculation of classical drive ∆',() is verified to reasonable extent

• Classical drive ∆",!$ is difficult to calculate
– Assumed cylindrical plasma in this presentation [1]
– Compare to toroidal axisymmetric plasma assumption [2]

• RDCON results show marginal instability vs. CTM
– Boundary truncation helps [3]
– Agrees qualitatively with cylindrical calculation
– It is still unclear whether CTM is an implicit trigger

• Fast ions can affect ∆",!$ [4], not included in this work
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Calculation of fast ion orbit type is verified

• Fast ion term concerns passing fast ions [1]
– ORBIT [2] is used to determine fast ion orbit types
– Value at q = 2 affects 𝑛.
– Gradient at q = 2 surface affects 𝐿%"
– Guiding center assumption makes edge result inaccurate

• Profile of fraction is assumed fixed, but it…
– Changes in time < 10%
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Further discussions on the analysis

• Ion density measurement in the analysis is verified
– TRANSP takes 𝑍788 from CHERS
– CHERS calculates 𝑍788 = ⁄𝑛6 + 𝑛. 𝑛9 ≈ ⁄𝑛6 𝑛9
– Ratio ⁄𝑛. 𝑛6 is very small (0.4% at q = 2)

• Assumed ramp down phase to be difficult to model

• Down-selected from database of 157 discharges
– Both MSE and SXR systems on: 15
– Unfavorable q profiles for SXR diagnostics: 6
– Poor SXR signal to noise ratio: 6
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• Pressure driven ideal mode may provide the implicit trigger
– Inclusion of the fast ion pressure to the total pressure is decisive
– Classical tearing mode might also provide the implicit trigger

• Kinetic neoclassical polarization current may provide the early growth
– Fast ion drive as large as 1% of bootstrap current drive can be important

• Kinetic neoclassical polarization current is important in these conditions:
– Ion poloidal Larmor radius is comparable to the island width
– Magnetic island rotates in the electron diamagnetic drift direction [1,2] Future work

Fast ion can be implicit trigger for spontaneous NTM in NSTX

[1] Waelbroeck et al, PRL 87 215003 (2001) 
[2] Ida et al, PRL 88 015002 (2002)
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Conjecture: Island rotation direction changes as they grow

Polarization current is stabilizing when 𝜔 ≈ 𝜔∗" and 𝜔 ≈ 𝜔∗# [1] Poloidal rotation changes sign 
as islands grow [2]

LHD

Theory

Backup

[1] Waelbroeck et al, PRL 87 215003 (2001) 
[2] Ida et al, PRL 88 015002 (2002)
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Not all spontaneous NTM cases in NSTX are investigated

• Observed in 157+ shots in NSTX [1]
– MSE [2] & SXR [3] on in 15 shots
– Mode takes many forms

• Analyzed 3 shots
– Does not have reversed shear1

– Does not have q = 2 near the wall2

– Clear phase jumps are observed3

[1] Fredrickson, private note

1 120475, 138948
2 116318, 123816, 124929, 134835
3 123873, 134020, 138940
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Data selection and experimental parameters

• TRANSP is used to obtain profiles
– Similar global parameters†

– Different rotation and shape
– Different q profiles at the NTM onset

• Experimental w(t) is from SXR
– Mirnov coil is used for the trend
– Synthetic SXR is used for normalization
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Passing fast ion fraction profile evolves in time
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• Fast ion term has nh(ψ)
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– Especially near q = 2
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Passing fast ion fraction profile is different with NTM
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