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ST40 Business Milestone: Achieve 100M C plasmas

@UNSTX-U

+ Do this in hot ion mode plasma (T;>> T,)
* Develop scenarios starting in H-H, then D-H, then D-D
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R(23-1): Transport characteristics of high performance, high

temperature ST40 discharges

- High T; discharge parameters (“hot ion mode” with T; >> T,)
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Type

a (m)

R (m)

l, (KA)
By (T)

ne (M)
Pinj (MW)

0.09 0.07
HO—H* HO—H*
0.25 0.26
0.42 0.44
507 537
1.72 1.95
1.46 1.44
4.4x10™ 3.5x10"
1.51 1.48
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Shot | o520 | 9539 | 9780 | 10009 _

Time of interest (s)

0.085 0.06
DO—H* DO—D*
0.26 0.28
0.47 0.49
544 580
1.98 1.89
1.36 1.42
5.0x10" 4.4x10'
1.80 1.60



TRANSP used to determine hydrogenic temperature and transport g))

coefficients; study isotope scaling of confinement/transport

« Measured T, and inferred profiles based on impurity measurements
« TRANSP determines hydrogenic temperature from power balance

+ Use different sets of consistent profiles inferred from Integrated Data Analysis
workflow to determine hydrogenic temperatures, power flows, transport
coefficients, confinement times

» Use EFIT outer boundary and internal equilibria

« Compared to TRANSP calculation of internal equilibrium — little impact on calculated
hydrogenic temperatures

« Assume Zy; = 2.1 — 2.3 (flat profile), consistent with preliminary
measurements
 Also tested by inputting inferred carbon and argon profiles — little impact on results
« Use inferred rotation profile for all cases
« 10s% variations in rotation has little impact on results
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Density profiles »)

+ Use range of density, temperature profiles that are consistent with experimental
constraints in IDA workflow

« Reflects uncertainties in results
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Hydrogenic temperatures slightly lower than impurity temperatures

Temperature (keV)

+ 100M C (~8.4 keV) exceeded in DO-D* discharge

Similar results for other high T; D%-D* discharges (T; ~0.5 keV lower in 10014)

Increase of T; seen with increasing isotopic mass
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Volume-integrated electron power balance

» Thermal conduction dominant loss channel
- lon-electron coupling (source) increases with difference in T;- T,
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Volume-integrated ion power balance

* Thermal conduction dominant loss channel

- lon-electron coupling (loss) rivals conduction loss only in D-D plasma
- Process limiting T; mostly through conduction loss (coupling helps)
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HOH* DO—H* DO—D*
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* YeZ i, Xi” Aneoclassical
Decrease in y; going from H-H to D-H to D-D; slower reduction going from D-H to D-D

« D-H contains significant thermal deuterium ion density; more similar to D-D discharge
Reduced central transport appears to account for higher T, for higher isotopic mass
Reduced transport overcompensates for increased ion-electron coupling loss
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Confinement increase/transport reduction may account for higher T; with g)

increasing isotopic mass, and with higher B; (for H-H discharges

* Increase in confinement time in all * Reduced core ion thermal
channels with isotopic mass, By transport at higher By
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Plans for next ST40 run campaign

- Experimental proposal on |, By, collisionality, isotope scans in hot-ion and H-
mode plasmas (several run days) submitted and accepted
« Getting good signal from TS, so hope is to have "full” kinetic profiles

« Hot-ion portion slated to run this run campaign, if high performance plasmas
recovered

ST40 presently assessing fix for leak at two locations of outer TF leg support pins (mid-April
start?)

« H-mode portion during Campaign 2
 Exploring options for augmenting CRADA with research in this and additional
areas
 Important for coverage during Recovery period
 Additional funding can support this work
« We welcome ideas from staff on how they can contribute to ST40 effort
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