

Transport Analysis of High Performance ST40 plasmas S. Kaye, Jan. 18, 2023

ST40 Business Milestone: Achieve 100M C plasmas

- Do this in hot ion mode plasma (T_i >> T_e)
- Develop scenarios starting in H-H, then D-H, then D-D

R(23-1): Transport characteristics of high performance, high temperature ST40 discharges

High T_i discharge parameters ("hot ion mode" with T_i >> T_e)

Shot	9520	9539	9780	10009
Time of interest (s)	0.09	0.07	0.085	0.06
Туре	$H^0 \rightarrow H^+$	$H^0 \rightarrow H^+$	$D^0 \rightarrow H^+$	$D^0 \rightarrow D^+$
a (m)	0.25	0.26	0.26	0.28
R (m)	0.42	0.44	0.47	0.49
I _p (kA)	507	537	544	580
B _T (T)	1.72	1.95	1.98	1.89
к	1.46	1.44	1.36	1.42
n _e (m ⁻³)	4.4 x 10 ¹⁹	3.5 x 10 ¹⁹	5.0 x 10 ¹⁹	4.4 x 10 ¹⁹
P _{inj} (MW)	1.51	1.48	1.80	1.60

TRANSP used to determine <u>hydrogenic</u> temperature and transport coefficients; study isotope scaling of confinement/transport

- Measured T_i and inferred profiles based on <u>impurity</u> measurements
 - TRANSP determines <u>hydrogenic</u> temperature from power balance
- Use different sets of consistent profiles inferred from Integrated Data Analysis workflow to determine hydrogenic temperatures, power flows, transport coefficients, confinement times
- Use EFIT outer boundary and internal equilibria
 - Compared to TRANSP calculation of internal equilibrium little impact on calculated hydrogenic temperatures
- Assume Z_{eff} = 2.1 2.3 (flat profile), consistent with preliminary measurements
 - Also tested by inputting inferred carbon and argon profiles little impact on results
- Use inferred rotation profile for all cases
 - 10s% variations in rotation has little impact on results

- Use range of density, temperature profiles that are consistent with experimental constraints in IDA workflow
 - Reflects uncertainties in results

Hydrogenic temperatures slightly lower than impurity temperatures

100M C (~8.4 keV) exceeded in D⁰-D⁺ discharge

NSTX-U

• Similar results for other high $T_i D^0-D^+$ discharges ($T_i \sim 0.5$ keV lower in 10014)

Increase of T_i seen with increasing isotopic mass

6

- Thermal conduction dominant loss channel
- Ion-electron coupling (source) increases with difference in T_i T_e

7

- Thermal conduction dominant loss channel
- Ion-electron coupling (loss) rivals conduction loss only in D-D plasma
- Process limiting T_i mostly through conduction loss (coupling helps)

Clear reduction in ion thermal diffusivity with increasing isotopic mass

9

 $H^0 \rightarrow H^+$ $D^0 \rightarrow H^+$ $D^0 \rightarrow D^+$ 10² 10^{2} 10² ST40 **ST40 ST40** 10009 @ 0.06 s 9539 @ 0.07 s 9780 @ 0.085 s χ_{e} $D^0 \rightarrow D^+$ $H^0 \rightarrow H^+$ D⁰→H⁺ Thermal Diffusivities (m²/s) Thermal Diffusivities (m²/s) Thermal Diffusivities (m²/s) χ_{e} χ_e 10¹ χi 100 10⁰ 100 χi χ_{neo} χ_{neo} χ_{neo} 10⁻¹ 10-1 10-1 0.2 0.2 1.0 Λ 0.4 0.8 0 0.4 0.6 0.8 0.2 0.6 0.8 1.0 0.6 1.0 0.4 $[\Phi/\Phi_a]^{1/2}$ $[\Phi/\Phi_{a}]^{1/2}$ $[\Phi/\Phi_{a}]^{1/2}$

• $\chi_e \geq \chi_i$, $\chi_i \gg \chi_{neoclassical}$

NSTX-U

- Decrease in χ_i going from H-H to D-H to D-D; slower reduction going from D-H to D-D
 - D-H contains significant thermal deuterium ion density; more similar to D-D discharge
- Reduced central transport appears to account for higher T_i for higher isotopic mass
 - Reduced transport overcompensates for increased ion-electron coupling loss

Confinement increase/transport reduction may account for higher T_i with increasing isotopic mass, and with higher B_T (for H-H discharges)

- Increase in confinement time in all channels with isotopic mass, $B_{\rm T}$

NSTX-U

- 10² 30 Total Therma **ST40** Electrons $H^0 \rightarrow H^+$ 25 lons Thermal Diffusivities (m²/s) Confinement Time (ms) 20 101 χ_i (1.72 T) 15 10 10⁰ B_**=**1.98 T B_=1.95 T 5 B_=1.89 T B_=1.72 T χ_i (1.95 T) 0 10-1 H-H D-D H-H D-H 0.2 0.6 0.8 1.0 0 0.4 **Discharge Type** $[\Phi/\Phi_{a}]^{1/2}$
- Reduced core ion thermal transport at higher B_T

Submitted as NF Letter

10

- Experimental proposal on I_p , B_T , collisionality, isotope scans in hot-ion and H-mode plasmas (several run days) submitted and accepted
 - Getting good signal from TS, so hope is to have "full" kinetic profiles
 - Hot-ion portion slated to run this run campaign, if high performance plasmas recovered
 - ST40 presently assessing fix for leak at two locations of outer TF leg support pins (mid-April start?)
 - H-mode portion during Campaign 2
- Exploring options for augmenting CRADA with research in this and additional areas
 - Important for coverage during Recovery period
 - Additional funding can support this work
 - We welcome ideas from staff on how they can contribute to ST40 effort

