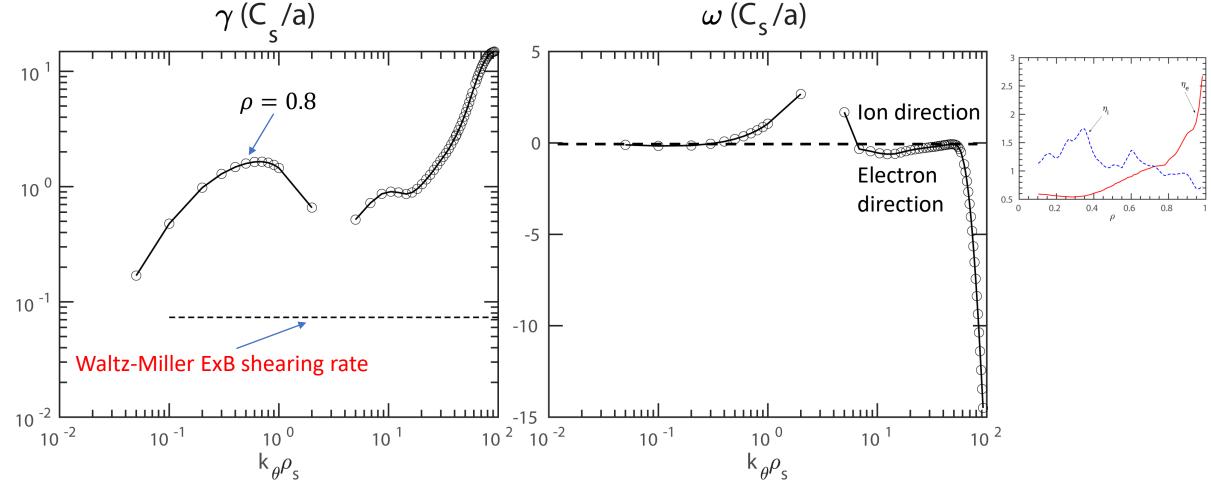
Linear Gyrokinetic Stability Analysis of ST40 Hot Ion Plasmas

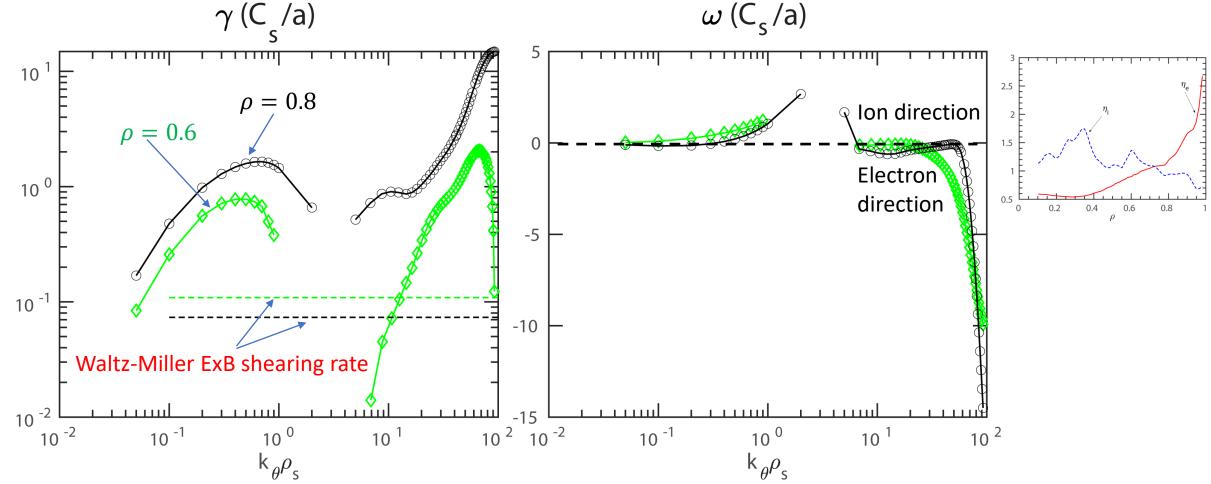
Y. Ren¹, S. Kaye¹, M.S. Anastopoulos Tzanis², M. Sertoli², A. Dnestrovskii², M. Romanelli²

1. PPPL 2. Tokamak Energy

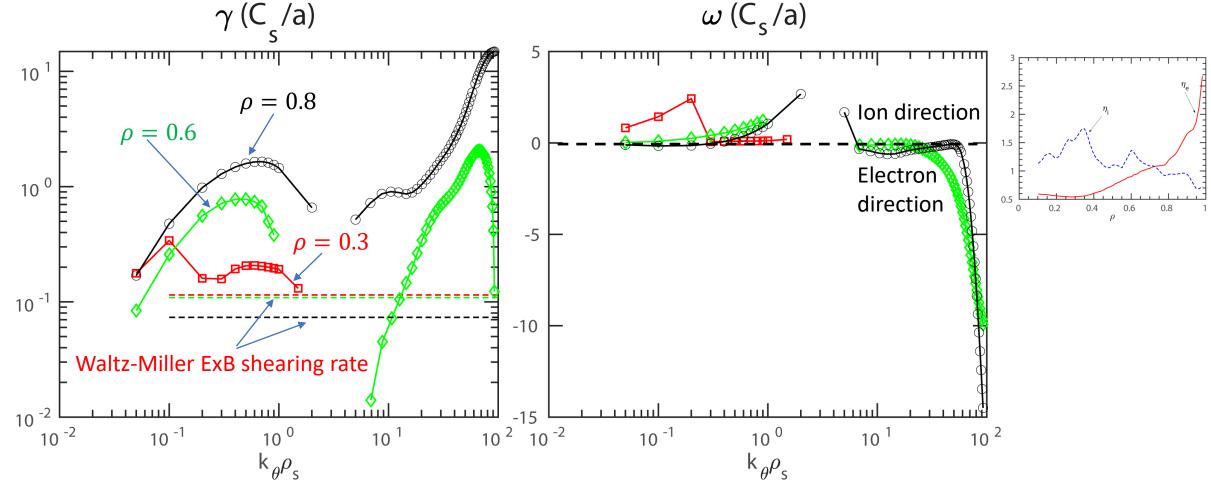

NSTX-U Monday Physics Meeting, February 20th, 2023

Highlights

- Linear gyrokinetic stability analysis with the GS2 code has been carried out for a ST40 hot ion plasma
- Linear growth rates of both ion- and electron-scale ($k_{\theta}\rho_s \gtrsim 0.2$) modes decrease from the edge toward the core of the plasma ($\rho = 0.3$ -0.8)
- Complete suppression of electron-scale modes ($k_{\theta}\rho_{s}\gtrsim 5$) is found at ho=0.3
- Ubiquitous mode (UM), ETG and an unidentified electron-scale instability are found at $\rho \ge 0.6$, with KMB/KSA and ITG/TEM at $\rho = 0.3$, through parametric scans, i.e., temperature gradients, aspect ratio, plasma beta


Significant Stabilization of Micro-instabilities towards the Plasma Core of a ST40 Hot-ion Shot 9831

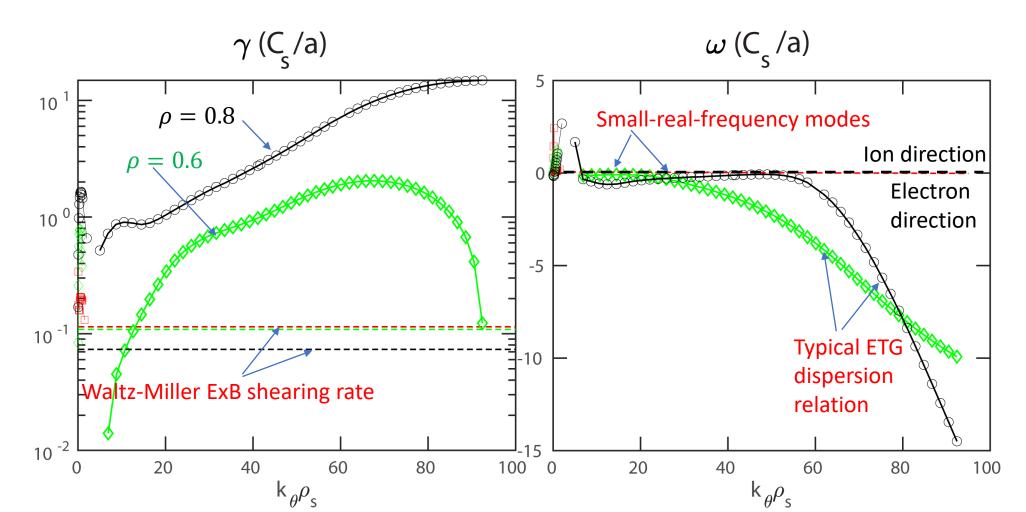
- Linear growth rates of both ion- and electron-scale ($k_{\theta}\rho_s\gtrsim 0.2$) modes decrease from the edge towards the core of the plasma
- Complete suppression of electron-scale modes ($k_{\theta}\rho_{s}\gtrsim 5$) at ho=0.3; No-monotonic for $k_{\theta}\rho_{s}<0.2$


Significant Stabilization of Micro-instabilities towards the Plasma Core of a ST40 Hot-ion Shot 9831

- Linear growth rates of both ion- and electron-scale ($k_{\theta}\rho_s\gtrsim 0.2$) modes decrease from the edge towards the core of the plasma
- Complete suppression of electron-scale modes ($k_{\theta}\rho_{s}\gtrsim 5$) at ho=0.3; No-monotonic for $k_{\theta}\rho_{s}<0.2$

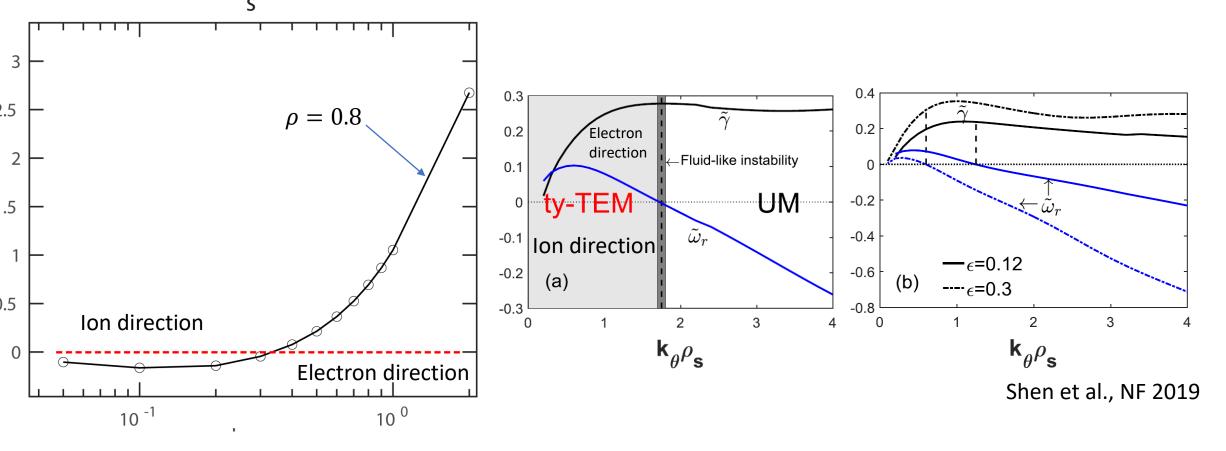
Significant Stabilization of Micro-instabilities towards the Plasma Core of a ST40 Hot-ion Shot 9831

- Linear growth rates of both ion- and electron-scale ($k_{\theta}\rho_s\gtrsim 0.2$) modes decrease from the edge towards the core of the plasma
- Complete suppression of electron-scale modes ($k_{\theta}\rho_{s}\gtrsim 5$) at ho=0.3; No-monotonic for $k_{\theta}\rho_{s}<0.2$

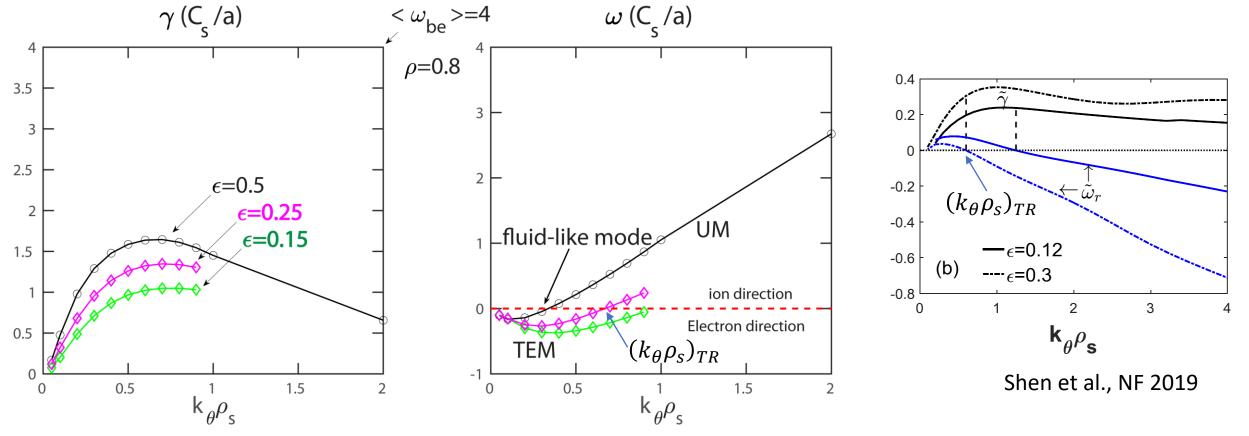


Propagation Directions Differ for Ion- and Electron-scale Modes

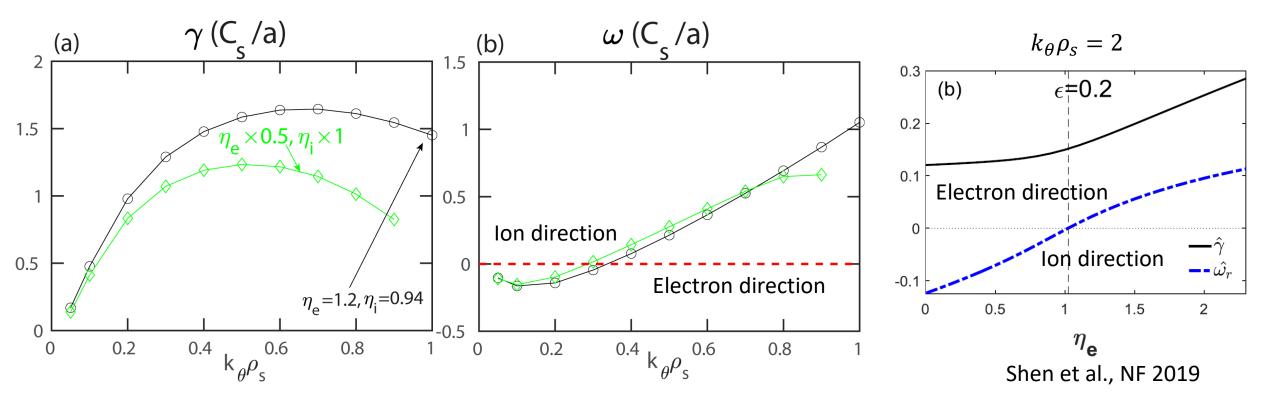
- Ion-scale modes are mainly in the ion direction and electron scale modes are mainly in the electron direction
 - At ρ =0.8, there is a change in propagation direction at $k_{\theta}\rho_{s} \approx 0.34$
- What are these ion-scale modes? ω (C_s/a) γ (C /a) 10^{1} $\rho = 0.8$ Ion direction = 0.6ρ Electron 10⁰ direction 2.5 -5 = 0.31.5 10⁻¹ 0.5 -10 Waltz-Miller ExB shearing rate 10^{0} 10 -1 k_{ρ} 10 ⁻² -15 10 ⁻² 10 ⁰ 10² 10⁻² 10⁻¹ 10^{0} 10⁻¹ 10^{2} 10 10^{1} $k_{\theta} \rho_{s}$ ${}^{\rm k}{}_{ heta}\!
 ho_{
 m s}$


Small Real Frequency is Seen for a Range of Electronscale modes

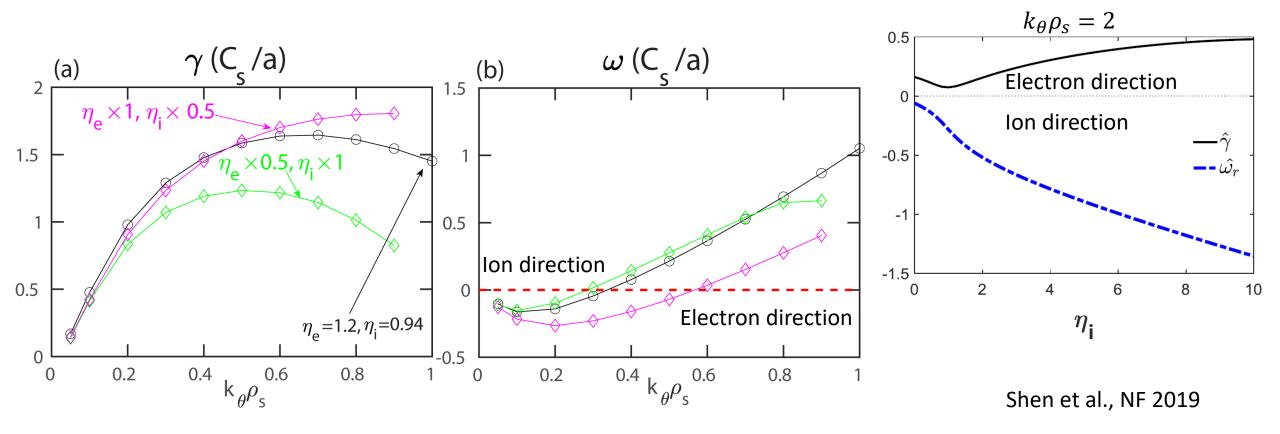
- These small-real-frequency k ranges extend from $k_{\theta}\rho_s \approx 5$ to 60 at $\rho = 0.8$ and from $k_{\theta}\rho_s \approx 5$ to 30 at $\rho = 0.6$
- Typical ETG dispersion is only seen at higher wavenumbers, $^{\sim}
 ho_{e}$
- What are these small-real-frequency electron-scale modes?


A Real Frequency Reversal in the Ion-scale k Range is found at ρ =0.8

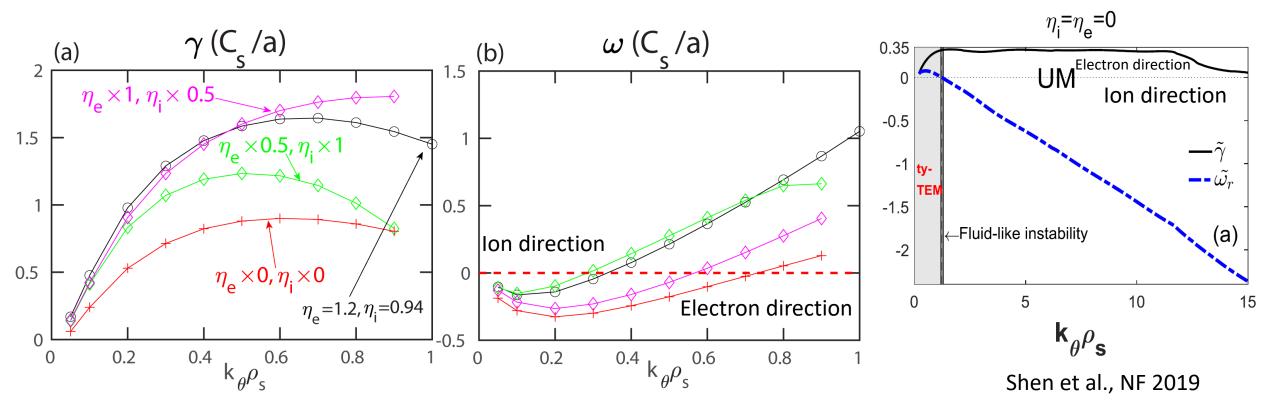
- Propagation direction changes from the electron direction to the ion direction from lower k to higher k at about $k_{\theta}\rho_s \approx 0.34$
- A smooth transition (rather than a jump) in real frequency indicates the same branch of solution of the dispersion relation
- Ubiquitous mode (UM) (Coppi, 1974 and 1977; Shen, 2019) seems consistent with these observations
 - UM is due to nonadiabatic responses of both trapped electrons and passing ions


Inverse Aspect Ratio Scans at $\rho = 0.8$ Show a Consistent Trend with UM

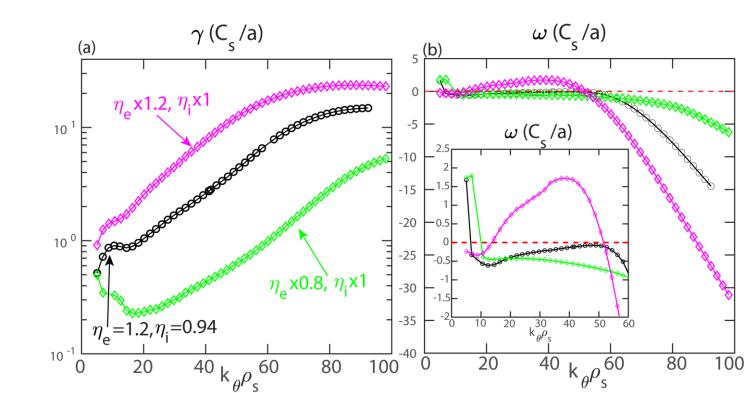
- The propagation direction changes from the electron direction to the ion direction with an increase in wavenumber
- The smooth transition (rather than a jump) indicates the same branch of solution of the dispersion relation
- Ubiquitous mode (Coppi, 1974 and 1977; Shen, 2019) is consistent with these observations
- The transition wavenumber between TEM and UM, $(k_{\theta}\rho_s)_{TR}$, denotes relative dominance of TEM and UM, i.e., smaller $(k_{\theta}\rho_s)_{TR}$ meaning more dominant UM in the k spectrum.


Ion and Electron Temperature gradient Scans at $\rho = 0.8$ Show a Consistent Trend with UM

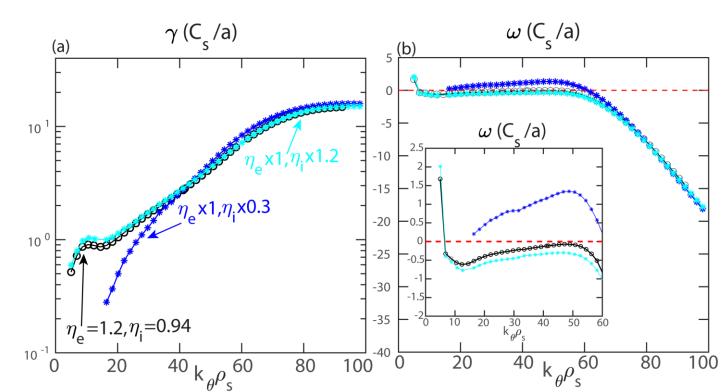
- Reducing η_e by 50% alone leading to reduced γ and more positive ω (more to the ion direction), except at $k_{\theta}\rho_s > 0.8$
 - η_e changed through T_e gradient
 - Smaller $(k_{\theta}\rho_s)_{TR}$ with reduced η_e , which makes UM more dominant in the k space


Ion and Electron Temperature gradient Scans at $\rho = 0.8$ Show a Consistent Trend with UM

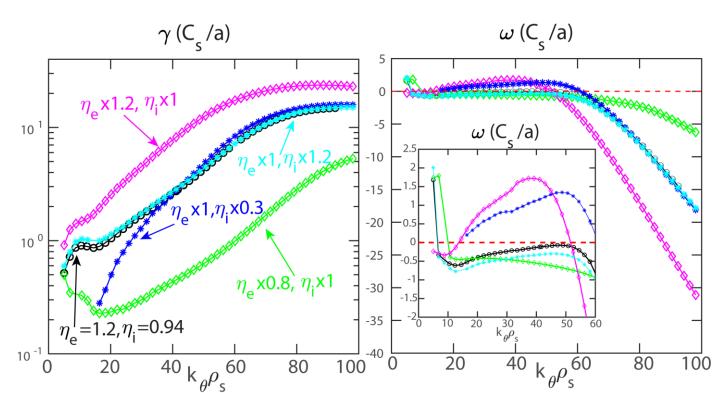
- Reducing η_i by 50% alone leading to increased γ at $k_{\theta}\rho_s > 0.4$ and more negative ω overall (more to the electron direction)
 - Larger $(k_{\theta}\rho_s)_{TR}$ with reduced η_i , which makes UM less dominant in the k space


Ion and Electron Temperature gradient Scans at $\rho = 0.8$ Show a Consistent Trend with UM

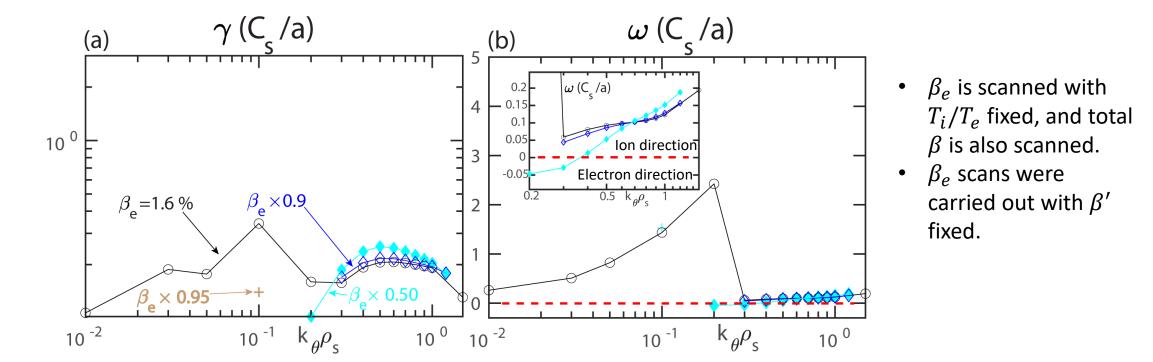
- Density gradient alone can drive UM as predicted by numerical simulations.
 - Larger $(k_{\theta}\rho_s)_{TR}$ with zero η_e and η_i , which makes UM less dominant in the k space


Electron-scale Modes at $\rho = 0.8$ are very Sensitive to η_e

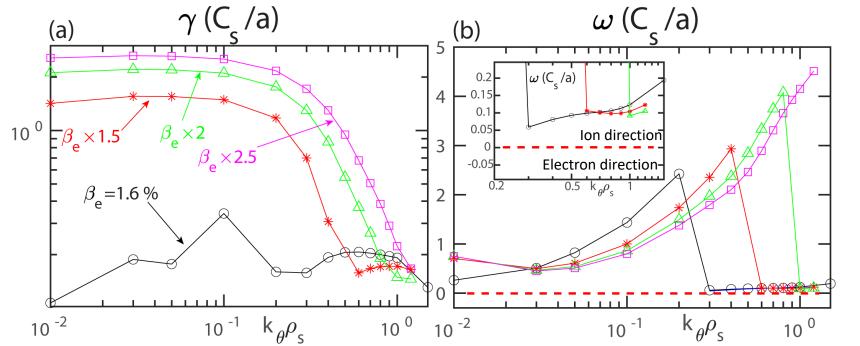
- γ of electron-scale modes at $k_{\theta}\rho_s > 7$ is very sensitive to η_e (through a/L_{T_e}) and the response is uniform across a wide range
 - Up to a factor of 3 increase in γ at $k_{ heta}
 ho_s pprox$ 44 with a 20% increase in η_e
 - More than 80% decrease in γ in the $k_{ heta}
 ho_s$ range of 23 to 78 with a 20% reduction in η_e
- ω of electron-scale modes at $k_{\theta}\rho_s > 7$ has very different response to η_e in the intermediate k range (between ρ_i^{-1} and ρ_e^{-1}) and in the high k range (ρ_e scale and beyond)
 - Intermediate k range modes having ω flipped to significantly positive values with a 20% increase in η_e, while high-k modes having more negative ω, consistent with the typical electrostatic ETG mode


Electron-scale Modes at $\rho = 0.8$ are Less Sensitive to η_i

- γ of electron-scale modes at $k_{\theta}\rho_s > 7$ is very sensitive to η_e (through a/L_{T_e}) and the response is uniform across a wide range
 - Up to a factor of 3 increase in γ at $k_{ heta}
 ho_s pprox$ 44 with a 20% increase in η_e
 - More than 80% decrease in γ in the $k_{ heta}
 ho_s$ range of 23 to 78 with a 20% reduction in η_e
- ω of electron-scale modes at $k_{\theta}\rho_s > 7$ has very different response to η_e in the intermediate k range (between ρ_i^{-1} and ρ_e^{-1}) and in the high k range (ρ_e scale and beyond)
 - Intermediate k range modes having ω flipped to significantly positive values with a 20% increase in η_e , while high-k modes having more negative ω , consistent with the typical electrostatic ETG mode
- The dependence on η_i is much weaker
 - γ or ω only significantly affected at $k_{ heta}
 ho_s < 40$ with a 70% reduction in η_i
 - γ or ω not significantly affected with η_i increased by 20%
- T_e gradient is the main free energy driving the unstable modes in the electron scale


Two Instabilities May Exist in Electron-scale at ho=0.8

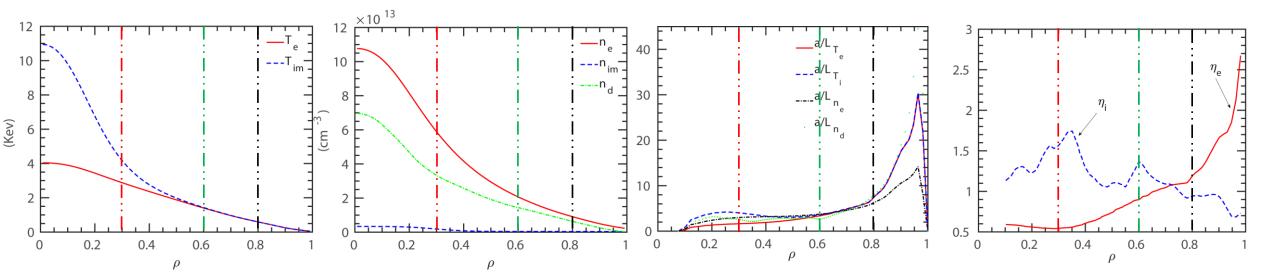
- γ of electron-scale modes at $k_{\theta}\rho_s > 7$ is very sensitive to η_e (through a/L_{T_e}) and the response is uniform across a wide range
 - Up to a factor of 3 increase in γ at $k_{ heta}
 ho_s pprox$ 44 with a 20% increase in η_e
 - More than 80% decrease in γ in the $k_{ heta}
 ho_s$ range of 23 to 78 with a 20% reduction in η_e
- ω of electron-scale modes at $k_{\theta}\rho_s > 7$ has very different response to η_e in the intermediate k range (between ρ_i^{-1} and ρ_e^{-1}) and in the high k range (ρ_e scale and beyond)
 - Intermediate k range modes having ω flipped to significantly positive values with a 20% increase in η_e , while high-k modes having more negative ω , consistent with the typical electrostatic ETG mode
- The dependence on η_i is much weaker
 - γ or ω only significantly affected at $k_{\theta}\rho_s < 40$ with a 70% reduction in η_i
 - γ or ω not significantly affected with η_i increased by 20%
- T_e gradient is the main free energy driving the unstable modes in the electron scale
- ω is a continuous function of $k_{\theta}\rho_s$ at $k_{\theta}\rho_s > 7$, indicating the same branch of solution of the dispersion relation in the electron scale.
- The Intermediate range small-ω ETG-drive instability has quite a different parametric dependence than the typical ETG mode and should be categorized as a different instability.


β_e Scans Support the Existence of KBM/KSA and ITG/TEM at $\rho = 0.3$

- Different beta dependence found in the lower k range ($k_{\theta}\rho_s \leq 0.2$) and in the lower k range ($0.3 \leq k_{\theta} \rho_s \leq 1.2$)
 - With β_e reduced by 5%, only $k_{\theta}\rho_s = 0.1$ in the lower k range remaining unstable with much reduced γ ; complete stabilization of the lower-k modes with β_e reduced by 10%
 - Reduced β_e leads to higher γ for the higher-k modes
 - Consistent with KBM/KSA in the lower k range and ITG/TEM in the higher-k range

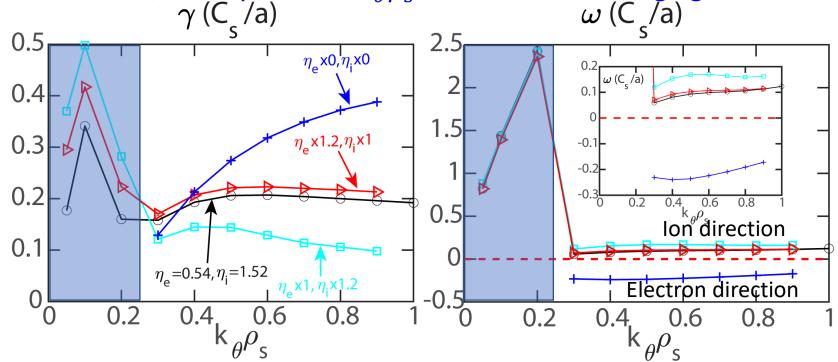
β_e Scans Support the Existence of KBM/KSA and ITG/TEM at $\rho = 0.3$

- Different beta dependence found in the lower k range ($k_{\theta}\rho_s \leq 0.2$) and in the lower k range ($0.3 \leq k_{\theta} \rho_s \leq 1.2$)
 - Increased β_e leading to much increased γ for the lower-k modes; The lower-k branch of solution pushed to higher wavenumbers
 - Increased β_e leading to lower γ for the higher-k modes
 - Consistent with KBM/KSA in the lower k range and ITG/TEM in the higher-k range


- β_e is scanned with T_i/T_e fixed, and total β is also scanned.
- β_e scans were carried out with β' fixed.

Summary and Conclusions

- Linear gyrokinetic stability analysis with the GS2 code has been carried out for ST40 hot ion plasmas.
- Linear growth rates of both ion- and electron-scale ($k_{\theta}\rho_s \gtrsim 0.2$) modes decrease from the edge toward the core of the plasma ($\rho = 0.3-0.8$).
- Complete suppression of electron-scale modes ($k_{\theta}\rho_{s}\gtrsim 5$) is found at $\rho=0.3$.
- Ubiquitous mode (UM), ETG and an unidentified low-real-frequency electron-scale instability are found at $\rho \ge 0.6$, with KMB/KSA and ITG/TEM at $\rho = 0.3$, through parametric scans


Linear Stability is Studied at Multiple Radii in a ST40 Hot-ion Shot 9831

- $B_T \sim 1.8$ T, $I_p \sim 500$ kA and not highly shaped with $\kappa \sim 1.3$ and $\delta \sim 0.2$
- Impurity temperature, T_{im}, ~ 11 keV in the core, and ion temperature, T_i, is 1-1.5 keV lower than T_{im} in the center, clearly in the hot-ion regime
 - $T_{im} = T_i$ well satisfied in the outer half of the plasma, and ion temperature gradient independent of T_{im} or T_i
- $\eta_e = \frac{L_{n_e}}{L_{T_e}}$ decreases from ~1 to ~0.5 from ρ =0.8 to 0.3, showing stabilization of ETG mode towards plasm core.
- $\eta_i = \frac{L_{n_d}}{L_{T_i}}$ increases from ~1 to ~1.5 from ρ =0.8 to 0.3, indicating ion mode becomes more important towards plasma core.
- The analysis was carried out at ρ =0.3, 0.6, 0.8 (ρ is the square root of normalized toroidal flux)

Temperature Gradient Scans Show the Existence of Two Instabilities in the Ion Scale at $\rho = 0.3$

- Enhanced growth rates in the lower k range ($k_{\theta}\rho_s < 0.3$) with increased η_e or η_i and complete stabilization with zero temperature gradient
 - Indicating a pressure dependence; Modes in ion direction; Characteristics of KBM/KSA
- Higher γ from increased η_e ; Lower γ (higher ω) from increased η_i (forming a γ peak in lower k); density gradient-driven TEM with zero temperature gradient
 - Consistent with a ITG/TEM hybrid and $k_{\theta}\rho_s \ge 0.3$ modes belonging the same branch of solution

