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Tailoring tokamak error field

Application of proposed error field correction (EFC)
- EFC to control edge localized mode instability

- EFC to control edge plasma transport

- Other applications
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3D Error field in tokamak

* Tokamak confines fusion plasma with its toroidally
symmetric magnetic field [Park etal., APS (2022)]

Tokamak is a complex device, and it consists of many
magnetic coils to apply tokamak configuration

However, there are always unwanted magnetic field
components in the tokamak, known as “3D error field”

3D error field from magnetic coils
[Logan et al., APS (2021)]
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Unfavorable effect of 3D error field in tokamak

* The 3D error field level of even less than 1% affects the stability and confinement of plasma.
* In particular, the most probable n=1 3D error field can drive mode locking and disruption.

* Tokamak construction is designed to minimize the error field.
- Tokamak is a complex system, so minimizing the error field needs a lot of time and resources.

* Disruption can be avoided by modification of poloidal spectra of n=1 3D error field.

NSTX- error field study KSTAR- disruption by proxy error field
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Potential benefit of 3D error field

* |TER plans to utilize the edge response of 3D field to control edge localized modes.

* Edge response of n=1 error field (EF) can be beneficial for tokamak operation.
- Edge response of n=1 field can lead to ELM suppression
- Edge response of n=1 EF can have synergy with applied RMP (e.g. ITER: n=1 EF + n=3 RMP).

n=1 edge 3D field (RMP) for ELM suppression Synergy of n=2 and n=3 RMP
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Leveraging edge response of error field

* Standard error field correction focuses on core error field without considering edge response
- Disruption from core error field is too dangerous
=>» Leveraging error field has been almost prohibited (best option: no EF + RMP)

* But, ITER will have 3 rows of EF correction coils in addition to 3 rows of RMP coils.
- There will be room to optimize EF spectra in ITER (at least 3 rows)

* High-n RMP will be less efficient in future device as 3D coils need to avoid nuclear degradation of coil.
- Use multiple toroidal harmonics (e.g., n=1 edge EF + n=3 RMP)
- Low-n RMP for ELM control will be more efficient

3D coils planned for ITER COMPASS-U ex-vessel coil size scan nvessel | Exvessel
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Plasma response is challenge in tailoring error field

* Core and edge 3D response is highly coupled in tokamak due to plasma response.
- Core error field reduction ~ edge error field reduction
* A systematic approach can minimize core response and maximize edge response by introducing

R g

core-null space projection, P, ,,,;; [S.M. Yang et al., NF, 2020].
- Edge and core resonant response as coupled damped oscillators.

Tailoring error field based on the IPEC response

Typical core/edge 3D response in tokamak
Resonant 3D field profiles

- Extensive overlap between core and edge
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Error field correction for ELM control in KSTAR

®* Error field correction to suppress ELMs are tested in KSTAR.

®* Due tolow intrinsic EF in KSTAR [1], IT = 5 kA is used as a proxy n=1 error field.
- It = 5 kA typically locks low density L-mode KSTAR plasmas.

®* Otherarrays (Ig, I) are used for n=1 error field correction (more flexibility in ITER)
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Error field correction for ELM control

®* Error field correction is designed to reduce core(yy < 0.9) while maintaining edge response.
- Decrease core EF (6 B.ore, Wy < 0.9) to avoid locked mode
- Increase (maintain) edge RMP (8 B,qg4.) for ELM control

® EF correction (Iy, I, Apyp, Adry) adjusted to reduce 8 Boyre/dBegge for ELM control.
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Optimized EFC avoids locking at low density and suppresses ELMs

*  Optimized EFC safely avoid locking at low density Optimized EFG, Minimized core PG, Edge-resonant e s
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Improved confinement of RMP-ELM suppression

* Also, three different 3D spectra with different edge localization are applied for ELM suppression
==> Slowly ramped to compare profile after ELM suppression

®* Edge localization (26015) leads less confinement degradation than other cases (26016)
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Improved confinement of RMP-ELM suppression

* Also, three different 3D spectra with different edge localization are applied for ELM suppression
==> Slowly ramped to compare profile after ELM suppression

®* Edge localization (26015) leads less confinement degradation than other cases (26016)
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Back up: Improved confinement of RMP-ELM suppression

Also, three different 3D spectra with different edge localization are applied for ELM suppression
==> Slowly ramped to compare profile after ELM suppression

Edge localization (26015) leads less confinement degradation than other cases (26016)
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Introduction: Zonal flow and 3D field in L-H transition

*  Afluctuating small scale E X B shear such as zonal flow is understood as a triggering mechanism of

L-H transition in tokamak.
* Recent study showed that 3D field can increase effect on turbulence transport, particularly in L-H

transition power threshold.
[3D field VS L-H power threshold ]

- GPI Frame
o ee Ol : _ KSTAR DIII-D
] & I I : ELM Supp.

0
g8 = i %
S 61 .8 - a1\ ¢ F KSTAR, 0.6MA, 1.8T, q_~4.1, n = 2x10"'m A
N 4 (o | N ] I 1.8 M n=1 @ n=2 M n=I(nominal EF)+ n=2 ] (a)
2 v v F - I Projected based on DIII-D* -+-
o= 0
50 48 46 44 42 50 48 46 44 42 15 ] 3
rcm] §- = * T E + i
_ 03 Zonal Vit = 0 - Vow =0-- Vi =0-- Vi =0 V=0 - = €2 + +
£ = Flows 1.2} T 5 :*'
£ 02 1r 1r 1r 1r 1 o o BT
£ A 7 / A i é ; °s | ¥ -
= 17\ 2 A A 2 ] 1
s M olff=o X0 X0 XQ XU oo B0 wm ® | m NBI
1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 ® NBI+ECH
£ [kHz] £ [kHz] £ [kHz] £ [kHz] f[kHz] £[kHz] 0 1 2 3 4 : 0
0 1 2 3 4 5

. > \ ‘ ->€z> % ER ) 8B,/B (104)
\ o @ [Y. In et al., NF, 2017] [L. Schmitz et al., NF, 2019]
6} [I. Shesteikov et al., PRL, 2013 KSTAR



Observation of limit-cycle oscillation before L-H transition

* We found oscillation of D, increase of nn,,, T, that indicates confinement enhancement right
between L-mode and H-mode phase in KSTAR.

* The observation in KSTAR before L-H transition resembles zonal flow oscillation in DIlI-D, which
shows edge density and temperature increase.

[Oscillation before L-H transition in KSTAR] [Zonal flow oscillation in DIIID]
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Tailoring error field to access/avoid H-mode

* Tailoring n=1 error field can lead to efficient H-mode transition with zonal flow/turbulence interaction
- At 1.1 MW, by removing edge/core error field in the error field correction

* Tailoring error field can prevent H-mode transition with increased turbulence, less zonal flow.
- At 2.0 MW, by leaving edge error field in the error field correction

®* Error field correction (EFC) should consider plasma response to control H-mode access. (vacuum vs total)

EFC to access H-mode (26026, at1.1 MW) Zonal-flow turbulence interaction
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Tailoring error field to access/avoid H-mode

Different error field correction applied at 2.2 s (EFC to access vs avoid H-mode)

Tailoring n=1 error field can lead to efficient H-mode transition with zonal flow/turbulence interaction
- At 1.1 MW, by removing edge/core error field in the error field correction

Tailoring error field can prevent H-mode transition with increased turbulence, less zonal flow.
- At 2.0 MW, by leaving edge error field in the error field correction

H-mode at lower heating (1.1 MW) H-mode at higher heating (2.0 MW)

- No edge turbulence change - Edge turbulence increased
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Tailoring error field to access/avoid H-mode

* Different error field correction applied at 2.2 s (EFC to access vs avoid H-mode)

* Tailoring n=1 error field can lead to efficient H-mode transition with zonal flow/turbulence interaction
- At 1.1 MW, by removing edge/core error field in the error field correction

* Tailoring error field can prevent H-mode transition with increased turbulence, less zonal flow.
- At 2.0 MW, by leaving edge error field in the error field correction
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Tailoring error field to access/avoid H-mode

The experiments shows importance of edge response of error field in error field correction (EFC).
- EFC to access H-mode: edge response should be minimized in EFC
- EFC to avoid H-mode: edge response should be maximized in EFC

Note that plasma response should be considered in this error field correction (EFC)

With plasma response Without plasma response
- Stronger edge response to avoid H-mode - Weaker edge response to avoid H-mode
=> Agrees with experiment => Does not agree with experiment
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Application: H-mode avoidance to sustain high T; regime

* There are alternative scenarios that needs to avoid

H-mode transition.
- (e.g. FIRE mode, negative-D, ITB, etc...)

* N=1ERMP is applied in KSTAR to avoid the L-H

transition with improved core confinement.

- Operates at low density without locking
(i, ~ 1.2 X 1019m~3)

- Avoid H-mode transition
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Application: Extending operation window of n=1 ELM suppression

* Edge localization also expanded operation of n=1 RMP-ELM suppression in S and qqs in KSTAR

- ITER relevant gq5 around 3.5 for the first time [Courtesy of S.K. Kim and S.H. Hahn (KFE)]
- B above 2.6 [M. Kim et al., submitted to Nuclear fusion]

n=1 ELM suppression Record B
0-8 L) L L L LJ L L} 0|8 L] L] L T
0.6p—"" 0.6F |p [MA]' 2 Regu'lar sh;pe
0.4¢ . 0.4F b Tungsten shape
0.2+ Ip [MA] - 0.(2) - ITER similar
18 T TR ] SS——— 3D fieldamp. kAl] 1
n= 6F . 1
5S¢ ' i 1 55 N——/—V—" ) E
) ) ) .3D ﬁe|g amp. [kA] A g L Ac.!aptlve c::mtrollerl . . ] . =
g' . - . - . ‘ ' iO | ' I . I ' D, |A.U.]4 0
.EII-.M ISUpp _ Jl 5 ELM suppressed N “ ]
0 M M " b . D“ [A'U'] 0 L L L A‘_‘“ -~ N
T T T T T T N " " - -1
4t q95 2.6 Bv=26 = )
q95~3.5 , 41W .
35l ) : ! . ; . . . . . By 1 15 2 25
5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12 R [m]
Time [s] Time [s]

) KSTAR =



Application: Extending operation window of n=1 ELM suppression

* Edge localization also expanded operation of n=1 RMP-ELM suppression in S and qq5 in KSTAR

- n=1 ELM suppression at various qg95 (q95~3.5, 5, 6)
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Application: Physics basis of real-time ELM controls

* The proposed scheme becomes physics basis of machine learning
-> Accelerates 3D spectrum optimization for real-time RMP-ELM control.

* The real-time controller successfully controls ELM with recovered confinement

[Courtesy of S.K. Kim]
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Conclusion

Resonant 3D field profiles

* Systematic scheme tailors tokamak error field to control instability

and transport.
- Add additional edge 3D response for ELM control
- Controls H-mode access/avoidance

no -EF corre.ction
(IT = 5 kA only) ,

10} =

* Proposed edge localization is also beneficial in RMP
- Safer low-n RMP ELM suppression to extend operation windows 51
- Optimizes confinement ELM suppressed H-mode

* This implies that error field can be favorably used in tokamak as long
as we have flexibility to control spectrum of error field. 0
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Improved plasma confinement with edge localization

© [M.W. Kim et al., NF submitted]
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Improved fast particle confinement with edge localization

[S.M. Yang et al., NF to be submitted]
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Edge localized RMP guides 3D coil design

Edge localization provides a physics basis for designing EFC and RMP coils.
- Due to engineering constraints of 3D coils, there are still remaining core resonant fields

even with systematic edge localization.

- Coil power supply upgrade from 5 to 10 kA can reduce this unnecessary component.
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Edge localized RMP guides 3D coil design

®* Edge localization provides a physics basis for designing EFC and RMP coils.

®* For example, improvement of confinement and safety of ELM suppression can be possible.
- Modified coil size and location of existing KSTAR coils (41 % increase of safe ELM suppressed window)

- a geometry optimization with FOCUS can further improve the ELM suppression window.
(141 % increase of safe ELM suppressed window)
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