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3D Error field in tokamak

• Tokamak confines fusion plasma with its toroidally 
symmetric magnetic field 

• Tokamak is a complex device, and it consists of many 
magnetic coils to apply tokamak configuration

• However, there are always unwanted magnetic field 
components in the tokamak, known as “3D error field”
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3D error field from magnetic coils
[Logan et al., APS (2021)]

[Park et al., APS (2022)]



Unfavorable effect of 3D error field in tokamak

• The 3D error field level of even less than 1% affects the stability and confinement of plasma.

• In particular, the most probable n=1 3D error field can drive mode locking and disruption.

• Tokamak construction is designed to minimize the error field.
- Tokamak is a complex system, so minimizing the error field needs a lot of time and resources.

• Disruption can be avoided by modification of poloidal spectra of n=1 3D error field.
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[Menard et al., NF (2010)]

NSTX- error field study KSTAR- disruption by proxy error field
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Potential benefit of 3D error field

• ITER plans to utilize the edge response of 3D field to control edge localized modes.

• Edge response of  n=1 error field (EF) can be beneficial for tokamak operation.
- Edge response of n=1 field can lead to ELM suppression
- Edge response of n=1 EF can have synergy with applied RMP (e.g. ITER: n=1 EF + n=3 RMP). 
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Synergy of n=2 and n=3 RMP

[S. Gu et al., NF (2019)]

n=1 edge 3D field (RMP) for ELM suppression

[J.-K. Park et al., NP (2019)]

Benefit of lower (n=2) harmonics 

in n=3 ELM suppression

3.5 kA vs 2.28 kA
(n=3)  (n=3)

* EF can provide free n=1 or 2 



Leveraging edge response of error field

• Standard error field correction focuses on core error field without considering edge response
- Disruption from core error field is too dangerous 
➔ Leveraging error field has been almost prohibited (best option: no EF + RMP)

• But, ITER will have 3 rows of EF correction coils in addition to 3 rows of RMP coils.
- There will be room to optimize EF spectra in ITER (at least 3 rows)

• High-n RMP will be less efficient in future device as 3D coils need to avoid nuclear degradation of coil.
- Use multiple toroidal harmonics (e.g., n=1 edge EF + n=3 RMP)
- Low-n RMP for ELM control will be more efficient
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3D coils planned for ITER

[Weisberg et al., NF 2019]

Additional 3 rows 

EF correction coils

RMP coupling vs Toroidal mode number

Ex-vessel

In-vessel (work at high-n)

(Logarithmic decay)

COMPASS-U ex-vessel coil size scan In-vessel Ex-vessel 



Plasma response is challenge in tailoring error field

• Core and edge 3D response is highly coupled in tokamak due to plasma response.
- Core error field reduction ~ edge error field reduction 

• A systematic approach can minimize core response and maximize edge response by introducing 

core-null space projection, ി𝑃𝑐,𝑛𝑢𝑙𝑙 [S.M. Yang et al., NF, 2020].

- Edge and core resonant response as coupled damped oscillators. 
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~70% overlapping

Typical core/edge 3D response in tokamak  

- Extensive overlap between core and edge

no EF correction 
(𝑰𝑻 = 𝟓 𝒌𝑨 only)

7.1 s 

5 s 

Normalized flux [𝜓𝑁]

Resonant 3D field profiles

edge

core EF

core EF

Tailoring error field based on the IPEC response
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Error field correction for ELM control in KSTAR

• Error field correction to suppress ELMs are tested in KSTAR.

• Due to low intrinsic EF in KSTAR [1], 𝑰𝑻 = 𝟓 𝒌𝑨 is used as a proxy n=1 error field.
- 𝑰𝑻 = 𝟓 𝒌𝑨 typically locks low density L-mode KSTAR plasmas.

• Other arrays (𝑰𝑩, 𝑰𝑴) are used for n=1 error field correction (more flexibility in ITER)
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[1] Y. In et al., NF (2015)]



Error field correction for ELM control

• Error field correction is designed to reduce core(𝜓𝑁 < 0.9) while maintaining edge response.
- Decrease core EF (𝛿𝐵𝑐𝑜𝑟𝑒 , 𝜓𝑁 < 0.9) to avoid locked mode
- Increase (maintain) edge RMP (𝛿𝐵𝑒𝑑𝑔𝑒) for ELM control

• EF correction (𝑰𝑴, 𝑰𝑩, 𝚫𝝓𝑴𝑩, 𝚫𝝓𝑻𝑴) adjusted to reduce 𝛿𝐵𝑐𝑜𝑟𝑒/𝛿𝐵𝑒𝑑𝑔𝑒 for ELM control.
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no EF correction 
(𝑰𝑻 = 𝟓 𝒌𝑨 only)

7.1 s 

5 s 

Normalized flux [𝜓𝑁]

Resonant 3D field profiles

edge

core EF
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Optimized EFC avoids locking at low density and suppresses ELMs

• Optimized EFC safely avoid locking at low density 
ത𝑛𝑒 ~ 1 × 1019𝑚−3, while suppressing ELMs in H-mode.

• Standard EFC does not leave enough edge resonance
(ELM should be controlled using the additional method)

• Standard RMP and Edge-resonant EFC leave too much 
core EF -> disruption.

• This error field correction is different from typical RMP
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Improved confinement of RMP-ELM suppression

• Also, three different 3D spectra with different edge localization are applied for ELM suppression
==> Slowly ramped to compare profile after ELM suppression

• Edge localization (26015) leads less confinement degradation than other cases (26016)
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Improved confinement of RMP-ELM suppression

• Also, three different 3D spectra with different edge localization are applied for ELM suppression
==> Slowly ramped to compare profile after ELM suppression

• Edge localization (26015) leads less confinement degradation than other cases (26016)
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Back up: Improved confinement of RMP-ELM suppression

• Also, three different 3D spectra with different edge localization are applied for ELM suppression
==> Slowly ramped to compare profile after ELM suppression

• Edge localization (26015) leads less confinement degradation than other cases (26016)
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Introduction: Zonal flow and 3D field in L-H transition

• A fluctuating small scale 𝐸 × 𝐵 shear such as zonal flow is understood as a triggering mechanism of 
L-H transition in tokamak. 

• Recent study showed that 3D field can increase effect on turbulence transport, particularly in L-H 
transition power threshold.

15[I. Shesteikov et al., PRL, 2013].

[Y. In et al., NF, 2017] [L. Schmitz et al., NF, 2019]

[3D field VS L-H power threshold ]

KSTAR DIII-D



Observation of limit-cycle oscillation before L-H transition

• We found oscillation of 𝐷𝛼, increase of ത𝑛𝑒, 𝑇𝑒 that indicates confinement enhancement right 
between L-mode and H-mode phase in KSTAR.

• The observation in KSTAR before L-H transition resembles zonal flow oscillation in DIII-D, which 
shows edge density and temperature increase.
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[Zonal flow oscillation in DIIID]

[L. Schmitz et al., PRL 2012]

L-mode

[Oscillation before L-H transition in KSTAR]

H-mode



Tailoring error field to access/avoid H-mode

• Tailoring n=1 error field can lead to efficient H-mode transition with zonal flow/turbulence interaction
- At 1.1 MW, by removing edge/core error field in the error field correction

• Tailoring error field can prevent H-mode transition with increased turbulence, less zonal flow. 
- At 2.0 MW, by leaving edge error field in the error field correction

• Error field correction (EFC) should consider plasma response to control H-mode access. (Vacuum vs total) 
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Tailoring error field to access/avoid H-mode

• Different error field correction applied at 2.2 s (EFC to access vs avoid H-mode)

• Tailoring n=1 error field can lead to efficient H-mode transition with zonal flow/turbulence interaction
- At 1.1 MW, by removing edge/core error field in the error field correction

• Tailoring error field can prevent H-mode transition with increased turbulence, less zonal flow. 
- At 2.0 MW, by leaving edge error field in the error field correction
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Tailoring error field to access/avoid H-mode

• Different error field correction applied at 2.2 s (EFC to access vs avoid H-mode)

• Tailoring n=1 error field can lead to efficient H-mode transition with zonal flow/turbulence interaction
- At 1.1 MW, by removing edge/core error field in the error field correction

• Tailoring error field can prevent H-mode transition with increased turbulence, less zonal flow. 
- At 2.0 MW, by leaving edge error field in the error field correction
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Tailoring error field to access/avoid H-mode

• The experiments shows importance of edge response of error field in error field correction (EFC).
- EFC to access H-mode: edge response should be minimized in EFC
- EFC to avoid H-mode: edge response should be maximized in EFC

• Note that plasma response should be considered in this error field correction (EFC)
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Total Chirikov parameter 

𝜓𝑁

EFC to access 
H-mode

EFC to avoid 
H-mode
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𝜓𝑁

EFC to avoid 
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- Weaker edge response to avoid H-mode 
=> Does not agree with experiment

- Stronger edge response to avoid H-mode 
=> Agrees with experiment

With plasma response Without plasma response 



Application: H-mode avoidance to sustain high 𝑻𝒊 regime

• There are alternative scenarios that needs to avoid 
H-mode transition.
- (e.g. FIRE mode, negative-D, ITB, etc…)

• N=1 ERMP is applied in KSTAR to avoid the L-H 
transition with improved core confinement.
- Operates at low density without locking

- Avoid H-mode transition
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[Courtesy of Y.M. Jeon (KFE)]

(ത𝑛𝑒 ~ 1.2 × 1019𝑚−3)
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Application: Extending operation window of n=1 ELM suppression

• Edge localization also expanded operation of n=1 RMP-ELM suppression in 𝛽𝑁 and 𝑞95 in KSTAR

- ITER relevant 𝑞95 around 3.5 for the first time  [Courtesy of S.K. Kim and S.H. Hahn (KFE)]

- 𝛽𝑁 above 2.6 [M. Kim et al., submitted to Nuclear fusion]
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Application: Extending operation window of n=1 ELM suppression

• Edge localization also expanded operation of n=1 RMP-ELM suppression in 𝛽𝑁 and 𝑞95 in KSTAR

- n=1 ELM suppression at various 𝑞95 (𝒒𝟗𝟓~𝟑. 𝟓, 𝟓, 𝟔)
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Application: Physics basis of real-time ELM controls

• The proposed scheme becomes physics basis of machine learning

-> Accelerates 3D spectrum optimization for real-time RMP-ELM control.

• The real-time controller successfully controls ELM with recovered confinement
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[Courtesy of S.K. Kim]



Conclusion

• Systematic scheme tailors tokamak error field to control instability 
and transport.
- Add additional edge 3D response for ELM control

- Controls H-mode access/avoidance

• Proposed edge localization is also beneficial in RMP
- Safer low-n RMP ELM suppression to extend operation windows 
- Optimizes confinement ELM suppressed H-mode

• This implies that error field can be favorably used in tokamak as long 
as we have flexibility to control spectrum of error field.
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END



[Density dependence of error field thresholds in KSTAR]

[Yang et al., NF (2021)]



Improved plasma confinement with edge localization

(ERMP)

• Comparison of CRMP and ERMP shows 
confinement improvement with ERMP
- 𝜷𝑵 = 𝟐. 𝟔 achieved only with ERMP
- CRMP couldn’t get this 𝛽𝑁
- Edge localization improved at high 𝛽𝑁
- Physics can be related to fast ion

[M.W. Kim et al., NF submitted]



Improved fast particle confinement with edge localization

• With a reduced core RMP response, the 
simulation shows a reduction of fast ion loss.
- Due to good KAM surface with ERMP

• Simulation implies that ELM suppression can be 
maintained with improved fast ion confinement 
by core RMP reduction.

[S.M. Yang et al., NF to be submitted]



Edge localized RMP guides 3D coil design

• Edge localization provides a physics basis for designing EFC and RMP coils.
- Due to engineering constraints of 3D coils, there are still remaining core resonant fields

even with systematic edge localization.
- Coil power supply upgrade from 5 to 10 kA can reduce this unnecessary component.



Edge localized RMP guides 3D coil design

• Edge localization provides a physics basis for designing EFC and RMP coils.

• For example, improvement of confinement and safety of ELM suppression can be possible.
- Modified coil size and location of existing KSTAR coils  
- a geometry optimization with FOCUS can further improve the ELM suppression window. 

(141 % increase of safe ELM suppressed window)

(41 % increase of safe ELM suppressed window)


