

Achievement of key steps toward low-recycling, liquid lithium fusion devices in the Lithium Tokamak Experiment-β

Dennis P Boyle,

S Abe, S Banerjee, R Bell, W Capecchi, L Delgado-Aparicio, D Elliott, M Francisquez, K Gan, C Hansen, E Jung, B Koel, P Krstic, S Kubota, M Lampert, B LeBlanc, A Maan, R Maingi, R Majeski, A McLean, J Menard, J Morales, E Ostrowski, V Soukhanovskii, K Tritz, G Wilkie, L Zakharov

w3.pppl.gov/~dbovle

Supported by US DOE contracts DE-AC02-09CH11466, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-SC0019006, DE-SC0019239, DE-SC0023481, DE-SC0023274, and DE-SC0019308.

1

LTX-β achieves key prerequisites for low-recycling fusion

- Liquid Li a possible solution to the biggest problems in fusion
 Power handling + Higher confinement
- Key idea: Low $R \rightarrow$ Hot edge, $T_{edge} / T_{core} \sim 0.5$ -1; ~Flat T

New Results:

- High confinement 1.5-2x H98 in ohmic discharges w/o pedestal
- Flat *T_e* profile sustained with steady density
- Hot, low-recycling edge ($R \sim 0.6$) seen with liquid Li walls
- NBI heating and fueling in very low recycling discharges

LTX-β achieves key prerequisites for low-recycling fusion

- Liquid Li a possible solution to the biggest problems in fusion
 - Power handling + Higher confinement
- Key idea: Low $R \rightarrow$ Hot edge, $T_{edge} / T_{core} \sim 0.5$ -1; ~Flat T

New Results:

- High confinement 1.5-2x H98 in ohmic discharges w/o pedestal
- Flat *T*_e profile sustained with steady density
- Hot, low-recycling edge (*R*~0.6) seen with liquid Li walls
- NBI heating and fueling in very low recycling discharges

High $\tau_{\rm E}$ exceeds scalings, 2x H98 and 3-4x Linear Ohmic

- Sustained current flattops ~25-35 ms with tailored OH waveform
 - Lower, longer $I_p \sim 85$ or 100 kA
 - Peaked T_e , not flat, due to higher gas fueling; solid Li
 - Stored energy \propto density
- 2x H-mode $\tau_{\rm E}$ w/o H-mode pedestal
 - Stored energy from T_e+TRANSP w/ neoclassical ions matches equilibrium reconstructions w/ diamagnetic loop

Motivation: Strong confinement effect on fusion Q_{DT}~H²⁻⁵

- Improving confinement relative to scalings would greatly reduce cost of fusion
- LTX and LTX-β achieved H98 ~ 1.5-2 with ohmic heating using lithium coatings

Data adapted from Menard, NF 2016 See also Menard, Phil. Trans. R. Soc. A 2019

LTX- β achieves key prerequisites for low-recycling fusion

- Liquid Li a possible solution to the biggest problems in fusion
 Power handling + Higher confinement
- Key idea: Low $R \rightarrow$ Hot edge, $T_{edge} / T_{core} \sim 0.5-1$; ~Flat T

New Results:

- High confinement 1.5-2x H98 in ohmic discharges w/o pedestal
- Flat <u>*T_e</u> profile sustained with steady density</u></u>*
- Hot, low-recycling edge (*R*~0.6) seen with liquid Li walls
- NBI heating and fueling in very low recycling discharges

LTX- β is a modest sized spherical tokamak with unique walls

Maximum Parameters		LTX- β
Major Radius	R	40 cm
Minor Radius	а	26 cm
Toroidal Field	B_T	0.3 T
Plasma Current	I_p	135 kA
Flattop Duration	t _{flat}	~35 ms

7

Lithium on stainless steel shell surrounds LTX- β plasma

- Covers ~80% of plasma
- Can be entirely Li coated
- 1.5 mm SS PFC liner
 - 1 cm Cu base, Ni plated
- Heat to 270 350 °C
 - Lithium liquefies at ~180 °C
- Toroidal and poloidal breaks
 - 4 shell quadrants

Low recycling Li coatings cause rapid density pumpout

- *R*=flux out of wall / flux into wall
- With constant fueling, more $\text{Li} \rightarrow \text{lower } n_{e}$
- When external fueling is turned off, density decays ~exponentially
- $au_p^* \equiv rac{ au_p}{1-R} \approx N/rac{dN}{dt}$
- *R* and *τ*_p^{*} reduced w/ increased Li

W/o edge neutral cooling, plasma hot all the way to the wall

- Suppressing ∇*T* suppresses drive for ETG/ITG turbulence
 - All losses are from particle convection, not thermal conduction
- LTX saw first flat T_{e} , hot edge w/ low recycling & high τ_{E}
 - Long standing prediction
 - » Krashnenikov PoP 2003
 - » Zakharov FED 2004
- LTX-β first measurement of very low *R*~0.5 coinciding with flat *T*_e

Anurag Maan PoP submitted, DPP 2022 Invited Friday AM Poster <u>YP11.047</u>

LTX- β : Low-recycling flat T_e profiles sustained for several τ_E

- Flat T_e sustained with steady, moderate fueling, $n_e \sim 10^{19}$ m⁻³
 - n_e limit for MHD tearing mode stability & flat T_e coincides

- Previously, flat *T_e* only with decaying *n_e* after fueling stopped
 - To further extend low-recycling regime, need to sustain density

D.P. Boyle NF 2023, S. Banerjee NF submitted Friday AM Poster <u>YP11.043</u>: Santanu Banerjee

LTX- β achieves key prerequisites for low-recycling fusion

- Liquid Li a possible solution to the biggest problems in fusion
 <u>Power handling</u> + Higher confinement
- Key idea: Low $R \rightarrow$ Hot edge, $T_{edge} / T_{core} \sim 0.5$ -1; ~Flat T

New Results:

- High confinement 1.5-2x H98 in ohmic discharges w/o pedestal
- Flat *T*_e profile sustained with steady density
- Hot, low-recycling edge (*R*~0.6) seen with liquid Li walls
- NBI heating and fueling in very low recycling discharges

LTX/LTX- β first & only tokamak with full **liquid** walls

Motivation: Liquid metals robust and self-healing
 Survive high heat and particle fluxes in a fusion reactor

Reliable tokamak operations with a liquid lithium wall

Liquid wall stable during discharge – no droplet ejection
 Lots of conditioning + 5 years in vacuum = Visibly clean liquid surface

Low-recycling flat T_e profiles achieved with liquid Li walls

- With clean, shiny liquid Li on ~200 °C shell, performance is similar to solid Li
 - Rapid n_{e} decay without fueling

Hot edge, relatively flat T_e
 profile reproduced with clean liquid Li

Very low $R \sim 0.6$ measured with liquid Li using Ly- α + DEGAS2

- Previously, increasing solid Li shown to reduce *R* and τ_p*
 Solid *R* seen below ~0.6
- Same DEGAS2 and τ_p^* analysis performed for liquid Li shots
 - Based on Lyman-α profiles, plasma profiles and equilibria
- Similar very low *R*~0.6 now seen with liquid Li as solid Li

Sustained flat T_e profiles also with liquid Li walls

- Liquid Li on ~200 °C shell
- Low I_p ~ 60 kA LTX-β discharges

LTX- β achieves key prerequisites for low-recycling fusion

- Liquid Li a possible solution to the biggest problems in fusion
 Power handling + <u>Higher confinement</u>
- Key idea: Low $R \rightarrow$ Hot edge, $T_{edge} / T_{core} \sim 0.5$ -1; ~Flat T

New Results:

- High confinement 1.5-2x H98 in ohmic discharges w/o pedestal
- Flat *T*_e profile sustained with steady density
- Hot, low-recycling edge (*R*~0.6) seen with liquid Li walls
- NBI heating and fueling in very low recycling discharges

$LTX-\beta$ explores auxiliary power in low-recycling regime

- Key motivation: W/o ∇T, is power degradation of confinement suppressed?
- Also key: Test NBI core fueling
 - Extend very low recycling regime to higher performance
- Have overcome initial challenges with fast ion losses on close-fitting shell

Parameters		LTX- β
Neutral Beam Current	Inbi	~35 A
Neutral Beam Energy	Enbi	1 3-20 keV
Neutral Beam Duration	t nbi	5-10 ms

With peaked T_e , no apparent τ_E degradation with $P_{NBI} \ge P_{OH}$

- Initial challenges with fast ion confinement overcome
 - $-I_{\rm p}$ > 100 kA
 - NBI less inboard
 - Plasma axis farther in
 - $E_{\rm NBI} \rightarrow 13 \; {\rm kV}$
- Need relatively dense, cool plasma to absorb beam, slow the fast ions
 - Solid lithium used in these results
 - Continuous fueling for high $n_{\rm e}$, low $T_{\rm e}$
- T_e increases across (peaked) profile

With peaked T_e , no apparent τ_E degradation with $P_{NBI} \ge P_{OH}$

- Initial challenges with fast ion confinement overcome
 - $-I_{\rm p}$ > 100 kA
 - NBI less inboard
 - Plasma axis farther in
 - $E_{\rm NBI} \rightarrow 13 \; {\rm kV}$
- Need relatively dense, cool plasma to absorb beam, slow the fast ions
 - Solid lithium used in these results
 - Continuous fueling for high $n_{\rm e}$, low $T_{\rm e}$
- T_{e} increases across (peaked) profile

NBI-heating maintains relatively flat, broad T_e profiles

- Generally difficult to get flat T_e + high n_e
 - Extra fueling during I_p ramp allows NBI heating with $T_{edge} \sim T_{core}/2$
 - Solid lithium used in these results
- $\tau_{\rm E}$ similar or better with NBI
 - No apparent degradation with P_{NBI}
 - Overall similar to scalings
- However, $P_{\rm NBI} < P_{\rm OH}$
 - NUBEAM estimates that most NBI power does not couple to plasma
 - » ~170 kW first orbit loss, ~40 kW shine
thru, CX

DP Boyle et al **Nuclear Fusion** 63 (2023) 056020

With liquid Li, NBI fueling ~20% density increase

- Core fueling important for low-*R*
 - Consistent but small NBI fueling also demonstrated with solid Li
 - $H-H^+ CX \rightarrow$ little net fueling
- NBI CX on higher Liquid Li impurity fraction may help fueling

 ~8-10x Li III emission liquid vs solid
 - Li CX \rightarrow fueling; cross section>>H
- n_e and T_e increase w/ NBI+liquid
 - TRANSP/NUBEAM: P_{NBI} < P_{OH},
 P_{total} similar due to lower resistivity
 - High fast ion pressure, high $\tau_{\rm E}$ > H98

Next step: Improved NBI coupling with larger R_{tan}

- Vent for calibrations, clean up, repairs, upgrades after **5 years** in vacuum
- Between shots Li, fueling, ECH breakdown, and plasma control
- Expanded and improved diagnostic set

LTX- β achieves key prerequisites for low-recycling fusion

- High confinement 1.5-2x H98 in ohmic discharges
- Flat T_e profile sustained for several τ_E with steady density
- Hot, low-recycling edge (R~0.6) demonstrated with liquid Li walls
- NBI heating and fueling shown, $\tau_{\rm E} \ge$ H98, no $P_{\rm NBI}$ degradation
- Further upgrades to increase beam heating and fueling
 - Improved diagnostics and operations
- Li provides possible solutions to both confinement and power handling
 - Novel physics no temperature gradient, collisionless edge, liquid PMI
 - Low-recycling liquid lithium walls are a fundamentally different, potentially better, approach to magnetic fusion

Lithium Tokamak Experiment-β Team, 2019

LTX-B

Thank you!

