

First measurements and validation of the imaging heavy ion beam probe at the ASDEX Upgrade tokamak

P. Oyola, J. Galdon-Quiroga, G. Birkenmeier, H. Lindl, A. Rodriguez-Gonzalez, G. Anda, E. Viezzer, J.Rueda-Rueda, B. Tal, M. Garcia-Munoz, A. Herrmann, J. Kalis, K. Kaunert, T. Lunt, D. Refy, V. Rohde, M. Sochor, M. Teschke, M. Videla-Trevin, E. Wolfrum, S. Zoletnik and the ASDEX Upgrade team

High Temperature Plasma Diagnostic Conference 2024 - Asheville

Edge dynamics determine confinement

Plasma edge is critical for plasma confinement:

- Separates confined hot plasma from the wall.
- Establishes the transport of energy and particles.

Figure from W. Zholobenko et al. PPCF 2021

Edge dynamics determine confinement

Plasma edge is critical for plasma confinement:

- Separates confined hot plasma from the wall.
- Establishes the transport of energy and particles.

 ∇p and j_{ϕ} are a source of free energy

- ELMs can cause a drop of ~10% of energy.
- Enhances the power to the wall up to ~10MW/m²

Precise measurements of j_{ϕ} and n_{e} to validate models

Outline

Outline

Working principle

- Primary beam: Cs⁰, Rb⁰ Ionizes around the separatrix → Measurement points
- Secondary beam: Cs⁺, Rb⁺ Gyromotion until reaching the scintillator

Electromagnetic perturbation $(\delta B_{pol}, \, \delta \Phi)$ Strike-line displacement

Density perturbation (δn_e) Intensity variation

Equilibrium strike-line

Compact i-HIBP setup at the AUG tokamak

[3] G. Anda *et al*, RSI **89** (2018)

22nd April 2024

Saturated currents with high extraction voltage

PIasma Science and Fusion Technology

- Source heated up to ~1000 °C.
- Extracted current measured by current sensors.

Saturatior

Cs

10

• Saturation of the current output due to:

Child-Langmu'

Voltage (kV)

- Spatial charges effect.
- Ion mobility.

3

0

l_{beam} (mA)

[4] J. Galdon-Quiroga et al., RSI (2024)

Neutralization cell with an efficiency of ~80%

- Alkali beam is singly ionized at the exit.
- Hot sodium in the neutralizer
- Neutralizer is filled with Na
 - Alkali undergo CX reaction
- Up to an 80% of neutralization efficiency⁴

Scintillator detector for augmented resolution

TG-Green (SrGa₂S₄:Eu⁺²):

- Fast decay: 590 ns.
- Higher photon multiplication.
- Slower degradation.

Optics:

- · Lenses for focalizing.
- SCHOTT image guide (1700 x 700 fibers).

[5] J.J. Toledo-Garrido *et al*, RSI (2021) [6] M. Videla-Trevín, Msc Thesis (2021)

22nd April 2024

*Patent pending

NSTX-U / Magnetic Fusion Science meeting - P. Oyola

Neutron flux strongly degrades the fibers

Strong neutron degradation due to the neutron flux:

- Degradation down to ~1% after a campaign.
- Exponential degradation observed.
- Ex-vessel heating returns it back to its original transmission.
- In-vessel heating system* installed to heal the fibers up to ~25% of the original.

Outline

First scintillator images

- First scintillator images⁴ obtained during the campaign 21/22:
 - Uncollimated signals with footprint of ~3 cm.

[4] J. Galdon-Quiroga *et al*., RSI (2024)

22nd April 2024

NSTX-U / Magnetic Fusion Science meeting - P. Oyola

14

Collimated beams are weaker

- First scintillator images obtained during the campaign 21/22:
 - Uncollimated signals with footprint of ~3 cm.
 - Collimation enhances resolution.

Diagnostic cameras provide accurate information on current beam location

- Stray field slightly deviates the beam during ramps:
 - Beam cameras: after the neutralization.

• Measurement of the beam deflection.

Beam moves during current ramp phases

- Stray field slightly deviates the beam during ramps:
 - Beam cameras: after the neutralization.

• Measurement of the beam deflection.

• RT observation of the beam motion within the beam line.

22nd April 2024

Beam signal obtained with low-density quiescient L-modes

Operational space:

- First measurements span over large operational space.
- Low-density L-mode plasmas.
 - Large secondary-ionization.
 - Background light.
- Improvements to reach the target region in progress.

Filamentary-like dynamics in the signal

Interesting dynamics observed in the i-HIBP signals:

- Dynamics where perturbation seems to propagate outwards (to the SOL):
 - Filamentary-like transport.

Interesting dynamics observed in the i-HIBP signals:

• Dynamics where perturbation seems to propagate outwards (to the SOL):

- Cut-off observed in the signal.
 - Shadowing from the optical head.

Plasma current dependence of the cut-off

Interesting dynamics observed in the i-HIBP signals:

• Dynamics where perturbation seems to propagate outwards (to the SOL):

• Cut-off observed in the signal.

- Cut-off positions depends on the plasma current
 Enables future magnetic field measurements!
 - $\frac{\Delta p_x}{\Delta I_n} \sim 1.1 \text{ cm/MA} \checkmark$ Spatial resolution = 0.2 mm

Beam chopper and deflection plates

PSFT Plasma Science and Fusion Technology

- Beam chopper installed prior to neutralization
 - Electric field to slightly change the beam trajectory
 - Chopping to allow for background subtraction.

Beam chopper correlates with signals at the scintillator

Beam chopper installed prior to neutralization:

- Electric field to slightly change the beam trajectory.
- Chopping to allow for background subtraction.
- Chopper used during some discharges.
- Observable differences.

Beam chopper correlates with signals at the scintillator

Beam chopper installed prior to neutralization

- Electric field to slightly change the beam trajectory.
- Chopping to allow for background subtraction.
- Chopper used during some discharges.
- Observable differences.
- Good agreement between signal and chopper.

Outline

The simulation framework: i-HIBPsim

22nd April 2024

The simulation framework: i-HIBPsim

Validation of the experimental shape

Realistic 3D modeling of the beam

- Gaussian beam divergence ($\alpha_{div} \sim 0.4^{\circ}$).
- Finite beam width (R_{beam} = 7 mm)

Full optical model implemented

- Strong distortion
- Periodic calibrations
- Realistic synthetic images and comparisons

Real 3D model of the i-HIBP optical head

• Cutting edges in experiments reproduced by the synthetic model

22nd April 2024

[8] P. Oyola et al., in preparation

[9] H. Lindl et al., DPG SmuK (2023)

Beam current profile depends on the beam radial coordinate

In principle, the beam attenuation depends on all the 3D beam parameters:

- Beam finite width.
- Beam divergence.

Attenuation of the particles only depends on:

- Injection angles (fixed)
- Magnetic configuration (fixed)
- Initial position of the particles in $\rho_{\mbox{\tiny pol}}$

$$I_{\rm beam} \approx I_{\rm beam} \left(\rho_{\rm pol}^0 \right)$$

In a 2D symmetric large aspect-ratio equilibrium:

- $(P_{\phi}, \delta \phi) \sim (\rho_{\text{pol}}, \delta \phi)$ can be used to map the scintillator.
- Translation to more physically relevant variables.
- $\rho_{\text{pol}} \rightarrow$ Location along the beam in magnetic coordinates
- $\delta \varphi \rightarrow \,$ Toroidal deviation from the center of the beam, same $\rho_{\mbox{\tiny pol}}$

E = 70 keV

#41358

Little stop here: apparent, real and scintillator spaces

- Signal space
- Poor physical understanding

Apparent space:

- First step of treatment.
- Larger insight
- Ignoring resolution

Real space:

- Tomographic inversion.
- Full reconstruction.
 - Takes resolution
 into account

$\rho_{pol} = \rho_{pol}(x_1, x_2)$ Scintillator $\bigvee_{\mathbf{v}} \mathbf{Strikemap} \mathbf{Apparent} \quad \underbrace{\mathsf{Weight fun.}}_{\mathbf{v}} \mathbf{Real}$

E = 70 keV #41358

Remapping to physical coordinates: the apparent space

PIASMA Science and Fusion Technology

In a 2D symmetric large aspect-ratio equilibrium:

- $(P_{\phi}, \delta \phi) \sim (\rho_{\text{pol}}, \delta \phi)$ can be used to map the scintillator.
- Translation to more physically relevant variables.
- $\rho_{\mbox{\scriptsize pol}} \rightarrow$ Location along the beam in magnetic coordinates
- $\delta \varphi \rightarrow \,$ Toroidal deviation from the center of the beam, same $\rho_{\mbox{\tiny pol}}$

Tomography: recovering the real space

Synthetic frame

22nd April 2024

Synthetic reconstruction matches qualitatively and allows reconstruction

Calculation of pure synthetic signal in 1D:

- IDA¹⁰ profiles: qualitative agreement.
- Different in the SOL \rightarrow Higher i-HIBP sensitivity.

Beam intensity (au)

#41358

Synthetic reconstruction matches qualitatively and allows reconstruction

1D i-HIBPsim

1D beam att.

Fitting algorithm

Calculation of pure synthetic signal in 1D:

- IDA profiles: qualitative agreement.
- Different in the SOL → Higher i-HIBP sensitivity.

 $\delta n_{e} (\rho_{pol})$

1D exp. signal

Synthetic reconstruction matches qualitatively and allows reconstruction

- Started fitting from IDA profile.
- Signal is extremely sensitive to perturbations on the Scrape-off Layer.
- First density profiles reconstructions with i-HIBP.

Large detector resolution in the radial coordinate

Large detector resolution:

- On the pedestal top.
 - Pixel $\leftrightarrow \rho_{\text{pol}}$

- On the far-SOL, peaky structures are convoluted with the larger pixel numbers:
 - Requires from tomography.

Larger spread in the toroidal direction

The toroidal distribution of the particles:

- Nicely reproduced by the remap.
- Tomography also does a good job.
- Larger spread in the remap than tomograpy.
- Tomography recovers 2D more accurately.

22nd April 2024

Conclusions and prospects

- Commissioning of the main components of the system was successful.
- First signals of the i-HIBP diagnostic obtained at the AUG tokamak.
- Operational regime established:
 - Low-density L-mode
- First density profiles reconstructions with the i-HIBP.

22nd April 2024

#40984

Conclusions and prospects

- Higher ion currents expected for lowermass alkali, like potassium:
 - Lower secondary attenuation.
 - Larger expected scintillator response.

• Measurements of filamentary phenomena.

- Working principle is expected to work better for smaller machines:
 - Feasibility study of combined LiBES + i-HIBP in the SMART tokamak.

Conclusions

• Commissioning of the main components of the system was successful.

• First signals of the i-HIBP diagnostic obtained at the AUG tokamak.

- Operational regime established:
 - Low-density L-mode
- First density profiles reconstructions with the i-HIBP.

First measurements and validation of the imaging Heavy Ion Beam Probe at the ASDEX Upgrade tokamak

Backup slides

High Temperature Plasma Diagnostic Conference 2024 - Asheville

Summary & Outlook

- Complete synthetic diagnostic for the i-HIBP diagnostic implemented
- Validation across of different plasma pulses, including the optical and 3D modeling.

- Despite the issues, first measurements were obtained for the plasma density.
- Current density measurements may be also possible when including the cutting edge.

Hardware setup³

Hardware setup³

22nd April 2024

Hardware setup³

22nd April 2024

The simulation framework: i-HIBPsim⁴

Impact of the neutral density is negligible

For realistic values of the neutral density:

• Decrease in the full signal is observed, correlated with the total density.

• For realistic value of $n_0 \sim 10^{16} \text{ m}^{-3}$, there is a reduction of ~1-5% in the signal.

• Experiments are carried out with low levels of gas puff injection.

Optical calibration in detail

TG-Green emission projected to Rb

SRIM (Si_{0.43}O_{0.24}N_{0.2}Sr_{0.1}Ba_{0.02}:Eu_{0.01}) 3000 - Cs 2500 dE/dx (keV/μm) 12000 1000 500 25 20 Rb Yield (10³ ¼ion) 10 Cs 20 60 80 100 40 Energy (keV)

Experimental measurements are only taken for ¹³³Cs:

- > Properties of the TG-Green vary depending on the scintillator.
- > No experimental measurements for the ⁸⁵Rb species.

Ad-hoc approximation to the $\Upsilon(E)$ for the Rb and K can be done via the Birk's law.

$$\Upsilon_s = \mathcal{S} \int_0^R \frac{\left(\frac{dE}{dx}\right)_s}{1 + \alpha_B \left(\frac{dE}{dx}\right)_s}$$

For E = 70 keV \rightarrow Cs: U = 10·10³ γ/ion \rightarrow Rb: U = 12·10³ γ/ion \rightarrow K: U = 25·10³ γ/ion

J.J. Toledo-Garrido *et al*, JINST **17** P02026 (2022)

http://www.srim.org/

Done with pysrim package: https://gitlab.com/costrouc/pysrim (v0.5.10)

22nd April 2024

Absolute calibration

- With the absolute calibration, the synthetic signal only fails with a factor ~ 6 :
 - Uncertainty in scintillator emission for Rb. •
 - Uncertainty in the fiber bundle degradation. •
 - The beam moves during the ramp-up phase,
 - Uncertain beam geometry

10⁵

(a)

Synth.

0.24

14

12

10

8

6

2

0.26

0.22

4

Counts N

() 0.20

0.30

AUG #39807

0.28

Exp. (x10)

[4] J. Galdon-Quiroga et al., RSI (2024)

Neutralization cell with an efficiency of ~80%

- Alkali beam is singly ionized at the exit.
- · Hot sodium in the neutralizer
- Neutralizer is filled with Na
 - Alkali undergo CX reaction
- Up to an 80% of neutralization efficiency⁴

T_{oven} ~ 230°C

Beam shifts by the magnetic field⁷

Before neutralization: Singly ionized beam

[7] B. Tal et al., E2-E2M Seminar (2023)

22nd April 2024

Beam shifts by the magnetic field⁷

Before neutralization: Singly ionized beam

- Subject to stray magnetic field.
- Beam path deviation from the beam center.
- Plasma current also contributes to the beam deflection.

Magnetic fields penetrate the beam line

- Stray field slightly deviates the beam during ramps:
 - Beam cameras: after the neutralization.

• Measurement of the beam deflection.

• Coils close to the beam cause a significant displacement.

• Design scenarios with low I_p .

High sensitivity to the SOL perturbations

Systematic study of the perturbed signal:

- Perturb the original profiles locally:
 - Proxy: the total signal variation.

$$\frac{\Delta S}{S_0} = \int \frac{S(\text{perturb}) - S(\text{original})}{S(\text{original})}$$

High sensitivity to the SOL perturbations

Systematic study of the perturbed signal:

- Perturb the original profiles locally.
- Large sensitivity at the SOL when perturbing the density.
- Almost linear dependence of signal with perturbation.

 $\frac{\Delta S}{S_0} \propto \delta n_e$ for small perturbations

• For $\delta T_e \sim 100 \text{ eV}$ at the SOL, signal is barely affected.

Transforming the 2D scintillator images into 1D profiles

Direct mapping between pixel and birth position:

- Vertical \rightarrow Magnetic radial coordinate
- Single ρ_{pol} per pixel \rightarrow We can map the signal to ρ_{pol} from 2D signals

NSTX-U / Magnetic Fusion Science meeting - P. Oyola

Eusion Techno