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Edge dynamics determine confinement

Plasma edge is critical for plasma confinement:
● Separates confined hot plasma from the wall.

● Establishes the transport of energy and particles.

Separatrix

Filament 
structuresFigure from W. Zholobenko et al. PPCF 2021
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Edge dynamics determine confinement

Plasma edge is critical for plasma confinement:
● Separates confined hot plasma from the wall.

● Establishes the transport of energy and particles.

∇p and jϕ are a source of free energy
● ELMs can cause a drop of ~10% of energy.

● Enhances the power to the wall up to ~10MW/m2

Precise measurements of jφ and ne to validate 

models
Courtesy of P. Cano-Megias
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Outline

The imaging Heavy Ion Beam Probe

Validation of i-HIBPsim and applications

First measurements
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Outline

The imaging Heavy Ion Beam Probe
Working principle
Diagnostic setup

Validation of i-HIBPsim and applications

First measurements
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Working principle

● Primary beam: Cs0, Rb0

Ionizes around the separatrix → Measurement points

● Secondary beam: Cs+, Rb+

Gyromotion until reaching the scintillator

Electromagnetic perturbation 
(dBpol, dF)

Strike-line displacement

Density perturbation (dne)
Intensity variation

[1] J. Galdon-Quiroga et al, JINST 12  (2017)
[2] G. Birkenmeier et al, JINST 14  (2019)
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Compact i-HIBP setup at the AUG tokamak

[3] G. Anda et al, RSI 89 (2018)
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Beam observation 
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Image guide
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beam
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Saturated currents with high extraction 
voltage

Current

Tsource ~ 1000 ºC

● Source heated up to ~1000 ºC.

● Extracted current measured by current sensors.

● Saturation of the current output due to:
● Spatial charges effect.

● Ion mobility.

Saturation

CsRb

Child-Langmuir Extractor
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Neutralization cell with an efficiency of ~80%

T ~ 230ºC

Rb+
Rb0

Rb+Rb0

Faraday cup

● Alkali beam is singly ionized at the exit.

● Hot sodium in the neutralizer

● Neutralizer is filled with Na
● Alkali undergo CX reaction

● Up to an 80% of neutralization efficiency4

[4] J. Galdon-Quiroga et al., RSI (2024)

Na vapour

Rb0
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Scintillator detector for augmented resolution

Light

Heat shield

Lenses
Orbit

Fiber b
undle

TG-Green (SrGa2S4:Eu+2):
● Fast decay: 590 ns.

● Higher photon multiplication.

● Slower degradation.

Optics:
● Lenses for focalizing.

● SCHOTT image guide (1700 x 700 fibers).

[5] J.J. Toledo-Garrido et al, RSI (2021)
[6] M. Videla-Trevín, Msc Thesis (2021)
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Neutron flux strongly degrades the fibers

Strong neutron degradation due to the 
neutron flux:

● Degradation down to ~1% after a campaign.

● Exponential degradation observed.

● Ex-vessel heating returns it back to its 
original transmission.

● In-vessel heating system* installed to heal 
the fibers up to ~25% of the original.

*Patent pending

~43%

TG-Green

~1%
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Outline

The imaging Heavy Ion Beam Probe

Validation of i-HIBPsim and applications

First measurements
1st signals and commissioning

Operational space
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First scintillator images

3 cm

#39810 @ t = 0.297s
● First scintillator images4 obtained during the 

campaign 21/22:

● Uncollimated signals with footprint of ~3 cm.

[4] J. Galdon-Quiroga et al., RSI (2024)

Rb
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Collimated beams are weaker
#40170 @ t = 1.96 s

1 cm

● First scintillator images obtained during the 
campaign 21/22:

● Uncollimated signals with footprint of ~3 cm.

● Collimation enhances resolution.

Side view

Diagnostic camera

Collimated beam

Full beam
Collimator
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Diagnostic cameras provide accurate 
information on current beam location

Side view

Top view

Div.

Beam

Beam shifts

X (mm)

Y
 (

m
m

)

● Stray field slightly deviates the beam during ramps:

● Beam cameras: after the neutralization.

● Measurement of the beam deflection.

Tokamak
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Beam moves during current ramp phases

● Stray field slightly deviates the beam during ramps:

● Beam cameras: after the neutralization.

● Measurement of the beam deflection.

● RT observation of the beam motion within the 
beam line.
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Beam signal obtained with low-density 
quiescient L-modes

Plasma current (MA)

Operational space

Rb
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Operational space:

● First measurements span over large operational 
space.

● Low-density L-mode plasmas.

● Large secondary-ionization.

● Background light.

● Improvements to reach the target region in progress.
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Filamentary-like dynamics in the signal

Interesting dynamics observed in the i-HIBP signals:

● Dynamics where perturbation seems to propagate 
outwards (to the SOL):
● Filamentary-like transport.
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Strong cut-off on the signal

Interesting dynamics observed in the i-HIBP signals:

● Dynamics where perturbation seems to propagate 
outwards (to the SOL):

● Cut-off observed in the signal.
● Shadowing from the optical head.

Collisions with 
the optical head
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Plasma current dependence of the cut-off

Interesting dynamics observed in the i-HIBP signals:

● Dynamics where perturbation seems to propagate 
outwards (to the SOL):

● Cut-off observed in the signal.

● Cut-off positions depends on the plasma current
● Enables future magnetic field measurements!

Spatial resolution = 0.2 mm
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Beam chopper and deflection plates

Poloidal 
plates

Toroidal 
plates

● Beam chopper installed prior to neutralization

● Electric field to slightly change the beam trajectory

● Chopping to allow for background subtraction.

Rb+

To the neutralizer

Rb+Rb+

Beam 
source



22NSTX-U / Magnetic Fusion Science meeting - P. Oyola22nd April 2024

Beam chopper correlates with signals at the 
scintillator
Beam chopper installed prior to neutralization:

● Electric field to slightly change the beam 
trajectory.

● Chopping to allow for background subtraction.

● Chopper used during some discharges.

● Observable differences.
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Beam chopper correlates with signals at the 
scintillator
Beam chopper installed prior to neutralization

● Electric field to slightly change the beam 
trajectory.

● Chopping to allow for background subtraction.

● Chopper used during some discharges.

● Observable differences.

● Good agreement between signal and chopper.

Signal (au)

Beam on
Beam off

Chopper
waveform
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Outline

The imaging Heavy Ion Beam Probe

Validation of i-HIBPsim and applications
Synthetic diagnostic

Density reconstruction

First measurements
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The simulation framework: i-HIBPsim

Equilibrium

Density & 
Temperature

Generation of the 
secondary beam

Beam 
geometry

Secondary followed 
until scintillator

Simplectic integrator

Kinetic module

Scintillator view

[8] P. Oyola et al., in preparation

Primary beam
Measurement points

Collisions with 
the optical head
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The simulation framework: i-HIBPsim

Equilibrium

Density & 
Temperature

Generation of the 
secondary beam

Secondary followed 
until scintillator

Simplectic integrator

Kinetic module

● Distortion
● Magnification
● Absolute calibration

Optical module

Synthetic 
signal

i-HIBPsim

Beam 
geometry

Camera view
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Validation of the experimental shape

#4
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Realistic 3D modeling of the beam
● Gaussian beam divergence (adiv ~ 0.4º).

● Finite beam width (Rbeam = 7 mm) 

Full optical model implemented

● Strong distortion

● Periodic calibrations

● Realistic synthetic images and comparisons

Real 3D model of the i-HIBP optical head
● Cutting edges in experiments reproduced by 

the synthetic model

[8] P. Oyola et al., in preparation
[9] H. Lindl et al., DPG SmuK (2023)
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Beam current profile depends on the 
beam radial coordinate

Attenuation of the particles only depends on:

● Injection angles (fixed)
● Magnetic configuration (fixed)
● Initial position of the particles in rpol

Primary beam
Measurement points

ρpol
0

In principle, the beam attenuation depends on all the 
3D beam parameters:

● Beam finite width.
● Beam divergence.

D
ev

ia
tio

n
 (

%
)

Beam coordinates, ρpol

α=0.6º
α=0.4º
α=0.2º

0
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Detector 2D mapping
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In a 2D symmetric large aspect-ratio equilibrium:

● (Pϕ, δϕ) ~ (ρpol,  δϕ) can be used to map the scintillator.

● Translation to more physically relevant variables. 

E = 70 keV
#41358

ρpol → Location along the beam in magnetic coordinates

δϕ →  Toroidal deviation from the center of the beam, same ρpol
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Little stop here: apparent, real and scintillator 
spaces
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E = 70 keV
#41358Scintillator space:

● Signal space
● Poor physical 

understanding

Apparent space:
● First step of 

treatment.
● Larger insight

● Ignoring resolution

Real space:
● Tomographic 

inversion.
● Full reconstruction.

● Takes resolution 
into account

Scintillator Apparent RealStrikemap Weight fun.
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Remapping to physical coordinates: the 
apparent space

In a 2D symmetric large aspect-ratio equilibrium:

● (Pϕ, δϕ) ~ (ρpol,  δϕ) can be used to map the scintillator.

● Translation to more physically relevant variables. 

ρpol → Location along the beam in magnetic coordinates

δϕ →  Toroidal deviation from the center of the beam, same ρpol

Synthetic frame
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Tomography: recovering the real space

Synthetic frame

Scintillator Remapped 
space

Real space
Mapping Tomography

Diag. resolution
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Synthetic reconstruction matches 
qualitatively and allows reconstruction

Equilibrium

3D i-HIBPsim

1D exp. signal

Exp. Signal 

Instr. function

1D i-HIBPsim

1D beam att.

Calculation of pure synthetic signal in 1D:

● IDA10 profiles: qualitative agreement.

● Different in the SOL → Higher i-HIBP 
sensitivity.

#41358

[10] R. Fischer et al., Fus. Sci. and Tech. 58 (2010)

Experiment
Synthetic (IDA)

Beam coordinates, ρpol

IDA electron density (1019 m-3)

Beam intensity (au)
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Synthetic reconstruction matches 
qualitatively and allows reconstruction

Equilibrium

3D i-HIBPsim

1D exp. signal

Exp. Signal 

Instr. function

1D i-HIBPsim

1D beam att.

Calculation of pure synthetic signal in 1D:

● IDA profiles: qualitative agreement.

● Different in the SOL → Higher i-HIBP 
sensitivity.

#41358

IDA electron density (1019 m-3)

Experiment
Synthetic (IDA)

dne (rpol)

Fitting algorithm

Beam coordinates, ρpol

Beam intensity (au)
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Synthetic reconstruction matches 
qualitatively and allows reconstruction

#41358

IDA
i-HIBP Fit

Experiment
Synthetic (IDA)

i-HIBP Fit

Beam coordinates, ρpol

● Started fitting from IDA profile.

● Signal is extremely sensitive to 
perturbations on the Scrape-off Layer.

● First density profiles reconstructions with  
i-HIBP.

Beam intensity (au)

D
ensity (10

19 m
-3)
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Large detector resolution in the radial 
coordinate

Large detector resolution:

● On the pedestal top.

●    Pixel      ↔    ρpol

● On the far-SOL, peaky structures 

are convoluted with the larger 

pixel numbers:

● Requires from tomography.
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Larger spread in the toroidal direction

The toroidal distribution of the 

particles:

● Nicely reproduced by the remap.

● Tomography also does a good 

job.

● Larger spread in the remap than 

tomograpy.

● Tomography recovers 2D more 

accurately.
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Conclusions and prospects

● Commissioning of the main components 
of the system was successful.

● First signals of the i-HIBP diagnostic 
obtained at the AUG tokamak.

● Operational regime established:
● Low-density L-mode

● First density profiles reconstructions with 
the i-HIBP.

#41358

IDA
i-HIBP Fit

Experiment
Synthetic (IDA)

i-HIBP Fit

Beam coordinates, ρpol

Beam intensity (au)

D
ensity (10

19 m
-3)
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Conclusions and prospects

● Higher ion currents expected for lower-
mass alkali, like potassium:
● Lower secondary attenuation.
● Larger expected scintillator response.

● Measurements of filamentary phenomena.

● Working principle is expected to work 
better for smaller machines:
● Feasibility study of combined LiBES + i-HIBP in 

the SMART tokamak.

SMART – Phase II

Lithium
@ 50 keV

i-H
IB

P

Li-BES
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Conclusions

● Commissioning of the main components 
of the system was successful.

● First signals of the i-HIBP diagnostic 
obtained at the AUG tokamak.

● Operational regime established:
● Low-density L-mode

● First density profiles reconstructions with 
the i-HIBP.

#41358

Experiment
Synthetic(IDA)

i-HIBP Fit

Beam coordinates, ρpol

Beam intensity (au)

IDA
i-HIBP Fit



First measurements and validation of the 
imaging Heavy Ion Beam Probe at the 

ASDEX Upgrade tokamak

Backup slides

High Temperature Plasma Diagnostic Conference 2024 - Asheville
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Summary & Outlook

1D sim

● Complete synthetic diagnostic for the i-
HIBP diagnostic implemented

● Validation across of different plasma pulses, 
including the optical and 3D modeling.

● Despite the issues, first measurements 
were obtained for the plasma density.

● Current density measurements may be 
also possible when including the cutting 
edge.
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Hardware setup3

Source and emitter
Current

Tsource ~ 1000 ºC

[3] G. Anda et al, RSI 89 (2018)
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Hardware setup3

Tcones ~ 100ºC Tcones ~ 100ºCTtop ~ 230ºC

Toven ~ 230ºC

Rb+ Rb0

Cone Ionization cell

Beam path

[3] G. Anda et al, RSI 89 (2018)
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Hardware setup3

[3] G. Anda et al, RSI 89 (2018)

Light emission

Optical system
Magnification & distortion

Fiber bundle

Fiber bundle

C
am

e
ra
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The simulation framework: i-HIBPsim4

[4] P. Oyola et al, RSI  92 043558 (2021)

Equilibrium

Density & 
Temperature

Generation of the 
secondary beam

Beam 
geometry

Secondary followed 
until scintillator

Simpletic integrator

Kinetic module

Thin-beam approximation
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Impact of the neutral density is negligible

For realistic values of the neutral density:

● Decrease in the full signal is observed, 
correlated with the total density.

● For realistic value of n0 ~ 1016 m-3, there is a 
reduction of ~1-5% in the signal.

● Experiments are carried out with low levels of 
gas puff injection.
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Optical calibration in detail

OPTICAL FIBER CAMQuantum efficiencyScintilla
tor

Neutron flux
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TG-Green emission projected to Rb

Experimental measurements are only taken for 133Cs:
➢ Properties of the TG-Green vary depending on the scintillator.

➢ No experimental measurements for the 85Rb species.

Ad-hoc approximation to the ¡(E) for the Rb and K can be 
done via the Birk’s law.

SRIM (Si0.43O0.24N0.2Sr0.1Ba0.02:Eu0.01)

J.J. Toledo-Garrido et al, JINST 17 P02026 (2022)
http://www.srim.org/
Done with pysrim package: https://gitlab.com/costrouc/pysrim (v0.5.10)

K
Rb

Cs

For E = 70 keV
→ Cs: U = 10·103 γ/ion
→ Rb: U = 12·103 γ/ion
→ K:   U = 25·103 γ/ion

http://www.srim.org/
https://gitlab.com/costrouc/pysrim
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Absolute calibration

● With the absolute calibration, the synthetic signal 

only fails with a factor ~6:

● Uncertainty in scintillator emission for Rb.

● Uncertainty in the fiber bundle degradation.

● The beam moves during the ramp-up phase, 
● Uncertain beam geometry
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Neutralization cell with an efficiency of ~80%

Tcones ~ 100ºC Tcones ~ 100ºCTtop ~ 230ºC

Toven ~ 230ºC

Rb+ Rb0

Cone

Rb+Rb0

Faraday cup

Cone

● Alkali beam is singly ionized at the exit.

● Hot sodium in the neutralizer

● Neutralizer is filled with Na
● Alkali undergo CX reaction

● Up to an 80% of neutralization efficiency4

[4] J. Galdon-Quiroga et al., RSI (2024)
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OH2u

divertor coils V1u

OH3u

COAu

V3u

COIu

V2u

TF
-c

oi
l

V3uV3o

COIo

V2o

1 cm

Beam shifts by the magnetic field7

Before neutralization:    Singly ionized beam

OH

[7] B. Tal et al., E2-E2M Seminar (2023)

Rb+Rb0
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1 cm

Beam shifts by the magnetic field7

Before neutralization:    Singly ionized beam

● Subject to stray magnetic field.

● Beam path deviation from the beam center.

● Plasma current also contributes to the beam 

deflection.

OH

V2U

V2O

V3O

V3U

[7] B. Tal et al., E2-E2M Seminar (2023)
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Magnetic fields penetrate the beam line

● Stray field slightly deviates the beam during ramps:

● Beam cameras: after the neutralization.

● Measurement of the beam deflection.

● Coils close to the beam cause a significant 
displacement.

● Design scenarios with low Ip.
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High sensitivity to the SOL perturbations

Systematic study of the perturbed signal:

● Perturb the original profiles locally:
● Proxy: the total signal variation.

Density (1019 m-3)
Initial prof.

Perturbation
Total

Signal (au)
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High sensitivity to the SOL perturbations

Systematic study of the perturbed signal:

● Perturb the original profiles locally.

● Large sensitivity at the SOL when perturbing 
the density.

● Almost linear dependence of signal with 
perturbation.

● For δTe ~ 100 eV at the SOL, signal is barely 
affected.



57NSTX-U / Magnetic Fusion Science meeting - P. Oyola22nd April 2024

Transforming the 2D scintillator images 
into 1D profiles
Direct mapping between pixel and birth position:

● Vertical → Magnetic radial coordinate

● Single ρpol per pixel → We can map the signal to 
ρpol from 2D signals

Equilibrium

3D i-HIBPsim

Exp. Signal 

Instr. function

#41358

B
ea

m
 p

ro
fil

e 
(a

u)

1D exp. signal

Beam coordinates, ρpol
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