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Summary: some fishbone instabilities in MAST/-U cause LEIRAtomic
both fast and thermal species transports % Authority

e MAST - temporal phase variation between signals from two spatial
separated diagnostics

Freq (kHz)

e MAST-U - observe it again, alongside evidences of significant fast
ion and thermal species transports and equilibrium crashes

 (1,1)-kink , even-m mode-mode interactions cause the most

significant crashes and transports among the FBs 345ms 351ms
- magnetic axis and sqrt(psiN): O to 1 with 0.1 increments
\ + ‘345n:5
15 - + 348ms

 the even-m modes could possibly be:

+ 351ms

e (n,m) = (1,2) tearing mode
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e n>1 modes (e.g. sawtooth, infernal modes) ad

-10 -

1.0

—-15 1

20

80 90 100 110 120 130 140
R (cm)

Henry H. Wong, NSTX-U Science Meeting, 8th of July 2024 UCLA 3



¥ooA00CO

Background on fishbone (FB) instabilities

e kink mode being destabilized by beam-induced fast ions

e kink modes could appear with or without q = 1 surface:

By (ARB.UNITS)

&
~

e internal kink: |gmin| < 1.0

Neuiral Beams

e infernal kink / interchange mode: |gmin| slightly above 1

e usually |gmin| ~ 1.1 but we found infernal-like FBs with |gmin| ~ 1.2 (high!) _s_f/
300 340 380 420 460 500
TIME (ms)

Fig. 6.1 Mirnov signal during fishbone mode, outline added by artist.

Why care about FB? (R.B. White 2001)

e cause fast ion transport/losses -> degrade fusion effectiveness + losses could damage wall components
e thermal transport (sometimes) -> affect core confinement and further reduce fusion effectiveness

e also difficult to model
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both internal and infernal kink regime FBs can be found in MAST plasma i,
UK Atomic

e similarin (SBZ spectrograms (panels (a) and (b)), but different g profiles ;E\Efr:%ty

 both FBs start at ~40kHz and then down chirping to ~20kHz (core rotation frequency)
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temporal phase variations (core SXR vs. edge 05, ) in MAST suggest distortion of mode

0By spectrogram

e SXR and BES structure measurements went through filters %0
(band pass, linear regressions, etc) using 0B as guideline

* |solate global effects (by eliminating turbulences, etc)

Freq (kHz)
w
w

e preserve phases between core SXR/BES vs. 0B

25

20

0.300 0.305 0.310

12000

10000

8000

6000

4000

2000

0
0.315 0.320

Time (seconds)

 FB radial structures are typical -> peak around the axis

. - ~ O for core
. (inverted) SXR - % - %% (L Zowen ) Oe AT near the core
€0 Mo 2 Lo Lo fefro

e OMAHA - 0B near edge

e expect phase difference between radially separated measurements,
but no temporal phase variation from linear theory with fixed
equilibrium -> distortion of mode

e change in k. and/or change in the equilibrium
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temporal phase variations (core SXR vs. edge 0B, ) in MAST suggest distortion of mode e
(continued) E\ﬂtﬂgﬁty
Qmin > 1 Qmin < 1
MAST discharge 29976 MAST discharge 26887
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MAST mode distortion measurements inspired new experiment in MAST-U Hi

UK Atomic
discharge # 471 28arb - discharge # 47132 .. new experiment in MAST-U aimed to study various
€) ) €) L e - |low-frequency modes
¥ BN - . RN L™ ' two shots (47128, 47132) have similar equilibria
- o . (densities, q profiles etc) except 47132 has slightly
N AV BN [0 .. higher beam power (1.5MW vs. 1.3MW) and hence
JOoBrU, D) e o o o higher equilibrium temp. and neutron emissions

e modes appear in this order:
e AE -> FB -> *double* FB -> TM -> Sawtooth

e tearing modes/LLMs dominate before gmin drop below
1 -> all FB-like bursts are infernal-like

)
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(Vo)

(e}

xis (m)
o
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=== MSE error

% (C) magnetic axis location — s7128mse data

0.97 1

—— 47132 ,MSE data

. | ! A | e chirps A, Bin 47128 -> single bursts

0.96 14

R position of the magnetic axis (m
position of the magnetic a

0.95

e chirps C, Din 47128 -> double bursts close proximity
in time and frequency

* reserved shears become more pronounced before
appearance of double FB-like bursts

neutron rate from fission chamber

000000

°°°°°° j(e) .- CXRSionrotation speed e significant axis movements, drops in neutron
emission, drops in rotation speed during/after

double FB-like bursts

e — o T ——— e drops in central thermal ion temperature during
instabilities FB-like -like double FB_Iike bursts
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MAST mode dlstortlon measurements inspired new experiment in MAST-U ﬁ%tomic
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e tearing modes/LLMs dominate before gmin drop below
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2*1(d)
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o 7" CXRS ion temperatures B s - * reserved shears become more pronounced before
EFIT++ q profile T EFIT++ q profile (7127 appearance of double FB-like bursts
2.0 —t= la|_min
2.0 —+ lglatR ~ 1.31m - P " u
1.8_(f) (7 e significant axis movements, drops in neutron
_ T emission, drops in rotation speed during/after
Cand ~F fal_min | .
s AW double FB-like bursts
| Nai o
[TTT SH L1 - - .
| WWWM e drops in central thermal ion temperature during
10 1 . ppn = - :bo._so 02 0.30 0.35 . 0.40 0.45 0.50 dOUbIe FB-Iike burSts
—( —¢ tm;e—1> { ot:; double TM/LLM : ‘

other EP double TM/LLM  sawtooth-like instabilities FB-like -like sawtooth-like

TR 47128 47132



upgraded 2D BES used to measure FB associated mode structures Uk tomic

Energy
Authority

 no ECEIl in MAST/-U due to low field strength

e complicated emissivity inversion of signals from poloidal SXR arrays (especially when equilibrium is disrupted)

e rely on 2D Beam Emission spectroscopy (BES) for 2D mode structure measurements
o BES samples (ISI ~ o (if there is no significant beam attenuation) near the core
0 o

e BES in MAST-U has 2D (~13cm x 15cm) window (movable radially).
e MAST-U has 2 NBIs. SS: on mid-plane; SW: vertically displaced

* 2D BES captures emissions from the SS beam shot # 46914, 0.310<t<0.360s
0.30 — < U W W W W W W Y
005 1, T R=0.95m ' <- viewing window of 47128, L \_)'d
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temporal phase variations (core BES vs. edge 05;) appear again in MAST-U %A
tomic
Althorty
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temporal phase variations (core BES vs. edge 05;) appear again in MAST-U (continued) ¥,
UK Atomic
Energy
Authority

5B, spectrogram * chirps C and D: close proximity in time and frequency

discharge #47128 e chirp C has slightly lower frequency then chirp D
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FB-like bursts likely peak between axis and gmin locations UK Atomic
Authority
discharge # 47128, t ~ 325.9ms  discharge # 47132, t ~ 326.2ms
mid-plane abs(61/1,) from BES mid-plane abs(61/1,) from BES
008 chirp B _ the burst similar to chirp B in 47128
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signals from vertically separated BES channels unveil m-parities of FB-like bursts UK Atomic

BES intensity (arb. unit)
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2 BES ch. (R,Z) = (96, 8.16)cm , (96, -6.15)cm
plasma is 1cm displaced vertically -> both 7cm away from the axis

if real(ol/1,) from these 2 ch. are in-phase -> even-m
If out of phase -> odd-m

for example, chirp B has odd-m
e -> most likely to be (n,m) =(1,1) mode

=CCFE



signals from vertically separated BES channels unveil m-parities of FB-like bursts gﬁe%tsmic
(continued) Authority
discharge # 47128

€Y
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U‘R Atomic

odd-m / even-m mode interactions cause disruptions e

fast ion transports (neutron emission, plasma rotations, axis movements), and drops of central ion temperature
associated to double FB-like bursts (e.g. chirps C and D in 47128) the strongest among other FBs

chirp C -> even-m; chirp D -> odd-m since the peak of burst, (n,m) = (1,1)?

(1 ,1 )-klnk & even-m mo d e intera Ctl on (Lzléjzg et al., Thermal ion kinetic effects and landau damping in fishbone modes, Journal of Plasma Physics 88
3D MHD sim. for NSTX case shows (1,1) mode alone could make field near gmin Stochastic.
single bursts (e.g. chirps A & B) - near flat central g; double bursts (e.g. C & D) - reserved shear g

likely that the presence of these two modes make the field in a reserved shear plasma more stochastic than
other FBs

e -> cause more significant disruptions compared to single bursts

Henry H. Wong, NSTX-U Science Meeting, 8th of July 2024 UCLA 2



the even-m mode is unlikely to be RSAE gfeﬁ\gtsmic

Authority

discharge
i I I I 1 I

#47128, 1 =346m

5  the even-m modes appear after the plasma
i becomes more reserved shear

250

: e but the frequency of mode is well below n = 1

i | 5 TAE gap
n=1 continuum gap j * mode doesn’t peak at gmin location
2 150l i e not RSAE?

100
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Trye
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e UCLA
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Freq (Hz)
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Possible nature of the even-m mode UK Atomic
. . . Energy
GERHARDT, S. et al., Relationship between onset thresholds, trigger types and rotation shear for the m/n = 2/1 Authorit
neoclassical tearing mode in a high-p spherical torus, Nucl. Fusion 49 (2009) 032003. utnority
m — i m WANG, F. & FU, G. Y. & BRESLAU, J. A. & TRITZ, K., and LIU, J. Y., Simulation of non-resonant internal
( n ’ ) - ( 1 J 2) tea rin g Od e kink mode with toroidal rotation in the national spherical torus experiment, Phys. Plasmas 20 (2013).

YANG, J. & PODESTA, M., and FREDRICKSON, E. D., Synergy of coupled kink and tearing modes in fast ion
transport, Plasma Phys. Control. Fusion 63 (2021) 045003.

e (n,m)=(1,1) mode triggers and interact with higher (n,m) modes (e.g. with (1,2) at g = m/n = 2)

e observed in multiple NSTX/-U case

e evidence of (1,1) + (1,2) interaction affecting confinements in MAST-U

discharge # 47128, CXRS ion temperature
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141
_4\(}\" b Ut .

0000 E e very mild central temperature drop and no
2 100 obvious flattening after chirp D
o ] e tearing mode interplay model: (n,m) = (1,1)

: @) T seeds the (1,2)

—— t=0.364987 |-> before FB-like

0 o M t=0.384988 | -> during TM-like  but chirp C (even-m) appears before the
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Possible nature of the even-m mode

n>1MHD modes

e for example:

 new sawtooth model: (1,1)-mode keeps q > 1 and n = m = 2 mode cause crash of central temperature

JARDIN, S. C. & KREBS, I., and FERRARO, N., A new explanation of the sawtooth phenomena in tokamaks, Phys. Plasmas 27 (2020).

e unable infernal modes in g = m/n surface flatten/lower the temp. profile without creating magnetic islands

JARDIN, S. C. el al., Ideal MHD induced temperature flattening in spherical tokamaks, Phys. Plasmas 30 (2023).
BOOZER, A. H., The rapid destruction of toroidal magnetic surfaces, Phys. Plasmas 29 (2022)

discharge 47128, toroidal mode numbers
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Conclusion & open questions UK Atomic

Authority

 (1,1) and even-m FB-like modes interactions cause significant disruption comparable to other MHD events
(sawtooth, tearing mode, etc)

 The nature of the even-m FB-like modes is still unclear. They have similarities but don’t look exactly like tearing
modes, sawtooth, higher order infernal modes, etc)

e Regardless of the nature of the even-m mode, the presences of mode-mode interaction and associated equilibrium
crash bring challenges to future simulation efforts

e self-consist models need to allow evolution of equilibrium (g, mesh, magnetic island, etc) AND handle mode-mode
interaction well to fully capture and predict the consequences of these (1,1) and even-m FB-like modes

Henry H. Wong, NSTX-U Science Meeting, 8th of July 2024 UCLA 2
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Future efforts Cnergy
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e try measuring magnetic islands near core and |g| ~ 2 surface in future MAST-U experiments
e MAST-U (no ECEI, alternatives needed, e.q. BES again)

e NSTX-U: with high time-res Thomson scattering

e alternatively, identify (n,m) = (1,2) TMs using poloidal coil array
e fast ion transport calculation and compare with diagnostics

e e.9. ORBIT-Kick interpretive calculation using input inferred from measurements, regardless the natures of the modes

Bonofiglo, Phillip J., Podesta, Mario, Vallar, Matteo, Gorelenkov, Nikolai N., Kiptily, Vasily,
White, Roscoe B., Giroud, Carine, and Brezinsek, Sebastijan. Numerical studies on saturated

kink and sawtooth induced fast ion transport in JET ITER-like plasmas. United States: N. p.,
2022. Web. d0i:10.1088/1741-4326/ac888c.

Kim, Doohyun, Podesta, Mario, Liu, Deyong, Hao, G. Z., and Poli, Francesca M. Investigation of

fast particle redistribution induced by sawtooth instability in NSTX-U. United States: N. p.,
2019. Web. do0i:10.1088/1741-4326/ab1f20.
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Linear regression model used to isolate global effects ?%(}Atomic
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e diagnostics might capture non-global effects (e.g. noise and turbulences) while FB is a global mode

e assume 0x(t) = Lx(é_B>(t)) + noise;
e X: either soft x-ray (SXR) or Beam Emission spectroscopy (BES) signal; Lx: unknown linear function

« band pass filter is also applied to 0x(¢), become S}(T,f)ﬁlltered

: _ LP( 5x (Ta f)ﬁlltered 8 ( 5BZ (T9 f)jrll%‘ered)T)
_ linear regression: 0x(#)p = — —
LP(SB. (T, fijerea™ (OB (T, Niiterea) )
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Line integrated tangential SXR signals are inverted (backup) o

Energy

to radial emissivities Authority

e could use the following least square method or Abel inversion (K G McClements et al 2021 Plasma Res. Express)

. on 1 Epporon 6T, 07
. SXR captures fluctuations: 5ISXR,i=[ (8e)e=dL;, where d€ = €5(2— + (— A pho! )—= A eff)
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Beam Emission Spectroscopy in MAST-U

I = N peoam©
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Xy: DC part; 0X: fast varying part. n,, > > on,
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\L; e 2D view with ~13cm x 15cm (change slightly in different
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