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• MAST  -  temporal phase variation between signals from two spatial 
separated diagnostics


• MAST-U  -  observe it again, alongside evidences of significant fast 
ion and thermal species transports and equilibrium crashes


• (1,1)-kink , even-m mode-mode interactions cause the most 
significant crashes and transports among the FBs


• the even-m modes could possibly be:


• (n,m) = (1,2) tearing mode


• n > 1 modes (e.g. sawtooth, infernal modes)
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Summary: some fishbone instabilities in MAST/-U cause 
both fast and thermal species transports
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• kink mode being destabilized by beam-induced fast ions


• kink modes could appear with or without q = 1 surface:


• internal kink: |qmin| < 1.0


• infernal kink / interchange mode: |qmin| slightly above 1 


• usually |qmin| ~ 1.1 but we found infernal-like FBs with |qmin| ~ 1.2 (high!)

Background on fishbone (FB) instabilities
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• cause fast ion transport/losses -> degrade fusion effectiveness + losses could damage wall components


• thermal transport (sometimes) -> affect core confinement and further reduce fusion effectiveness 


• also difficult to model

Why care about FB? (R.B. White 2001)
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• |qmin| > 1 (infernal-like)

both internal and infernal kink regime FBs can be found in MAST plasma 
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• |qmin| < 1 (internal-like)

major radius

• similar in  spectrograms (panels (a) and (b)), but different q profiles 


• both FBs start at ~40kHz and then down chirping to ~20kHz (core rotation frequency)

δBz

ax
is

ax
is

major radius

• plasma current ~ 800kA

• beam power ~1.5MW

• plasma current ~ 800kA

• beams power         

~2.1MW SS, ~0.9MW SW
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• FB radial structures are typical -> peak around the axis


• (inverted) SXR -     near the core


• OMAHA -  near edge


• expect phase difference between radially separated measurements, 
but no temporal phase variation from linear theory with fixed 
equilibrium -> distortion of mode


• change in  and/or change in the equilibrium

δϵ
ϵ0

= 2
δne

ne0
+ ( 1

2
+

Ephoton

Te0 ) δTe

Te0
+

δZeff

Zeff,0

δB

kr

5

temporal phase variations (core SXR vs.  edge  ) in MAST suggest distortion of modeδBz

• SXR and BES structure measurements went through filters 
(band pass, linear regressions, etc) using  as guideline

• isolate global effects (by eliminating turbulences, etc)


• preserve phases between core SXR/BES vs. 
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• distortions near the axis in both infernal 
and internal kink-like cases


• distortions are unlikely to be the results of 
beating/interaction with higher n modes 
due to sophisticated band-pass filtering 


• both have dominated toroidal mode 
number n = 1 and mode associated 
fluctuations peak near the axis


• -> both are on-axis FBs

temporal phase variations (core SXR vs.  edge  ) in MAST suggest distortion of mode 
(continued)

δBz

6

qmin > 1 qmin < 1
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• new experiment in MAST-U aimed to study various 
low-frequency modes


• two shots (47128, 47132) have similar equilibria 
(densities, q profiles etc) except 47132 has slightly 
higher beam power (1.5MW vs. 1.3MW) and hence 
higher equilibrium temp. and neutron emissions


• modes appear in this order:


• AE -> FB -> *double* FB -> TM -> Sawtooth


• tearing modes/LLMs dominate before qmin drop below 
1 -> all FB-like bursts are infernal-like


• chirps A, B in 47128 -> single bursts


• chirps C, D in 47128 -> double bursts  close proximity 
in time and frequency 


• reserved shears become more pronounced before 
appearance of double FB-like bursts


• significant axis movements, drops in neutron 
emission, drops in rotation speed during/after 
double FB-like bursts 


• drops in central thermal ion temperature during 
double FB-like bursts 

MAST mode distortion measurements inspired new experiment in MAST-U

7



| Henry H. Wong, NSTX-U Science Meeting, 8th of July 2024

MAST mode distortion measurements inspired new experiment in MAST-U
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• new experiment in MAST-U aimed to study various 
low-frequency modes


• two shots (47128, 47132) have similar equilibria 
(densities, q profiles etc) except 47132 has slightly 
higher beam power (1.5MW vs. 1.3MW) and hence 
higher equilibrium temp. and neutron emissions


• modes appear in this order:


• AE -> FB -> *double* FB -> TM -> Sawtooth


• tearing modes/LLMs dominate before qmin drop below 
1 -> all FB-like bursts are infernal-like


• chirps A, B in 47128 -> single bursts


• chirps C, D in 47128 -> double bursts  close proximity 
in time and frequency 


• reserved shears become more pronounced before 
appearance of double FB-like bursts


• significant axis movements, drops in neutron 
emission, drops in rotation speed during/after 
double FB-like bursts 


• drops in central thermal ion temperature during 
double FB-like bursts 
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upgraded 2D BES used to measure FB associated mode structures 
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• no ECEI in MAST/-U due to low field strength 

• complicated emissivity inversion of signals from poloidal SXR arrays (especially when equilibrium is disrupted)


• rely on 2D Beam Emission spectroscopy (BES) for 2D mode structure measurements


• BES samples  (if there is no significant beam attenuation) near the core


• BES in MAST-U has 2D (~13cm x 15cm) window (movable radially).

• MAST-U has 2 NBIs. SS: on mid-plane; SW: vertically displaced


• 2D BES captures emissions from the SS beam

δI
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≈
δne
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<- viewing window of 47128

<- viewing window of 47132
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• chirp A: 30-40kHz (high for a FB)

• chirp B: 22-35kHz


• chirp B signals are stronger then chirp A for both  and 

 +  is lower in chirp B 


• -> kink mode is less stable for chirp B


• smallest mid-plane  near the axis for both chirps


• BES vs.  phase change over time observed again, 

similar to SXR vs.  in MAST 

δBR

δI/Io qmin

δI/Io

δBR

δBz

temporal phase variations (core BES vs. edge ) appear again in MAST-UδBR
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• chirps C and D: close proximity in time and frequency


• chirp C has slightly lower frequency then chirp D


• chirp D has radial structure similar to A and B


• BES vs.  phase change over time


• chirp C phase starts at ~120 degrees lower then D


• phase and structure suggest chirps C is fundamentally 

different from other FB-like chirps in 47128

δBR

temporal phase variations (core BES vs. edge ) appear again in MAST-U (continued)δBR
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• axis: R ~ 97cm; qmin: ~120cm; q = 2: ~128cm

• if any of the bursts are off-axis FBs, then we 

expect stronger fluctuations in outer radii (i.e. 
BES from 47132 greater than 47128) but this 
isn’t the case 


• also don’t see the BES signals increase when R 
increases in 47132

• the FBs are likely to be on-axis FBs


FB-like bursts likely peak between axis and qmin locations
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signals from vertically separated BES channels unveil m-parities of FB-like bursts
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• 2 BES ch. (R,Z) = (96, 8.16)cm , (96, -6.15)cm

• plasma is 1cm displaced vertically -> both 7cm away from the axis


• if  from these 2 ch. are in-phase -> even-m

• if out of phase -> odd-m

real(δI/I0)

• for example, chirp B has odd-m 

• -> most likely to be (n,m) = (1,1) mode
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signals from vertically separated BES channels unveil m-parities of FB-like bursts 

(continued)
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• chirp C: even-m

• chirp D: first odd-even mixed, then odd-m -> (n,m) = (1,1) ?

• chirp D’s m-composition is probably affected by chirp C


• mode-mode interactions during double FB-like bursts

even-m
even-m

odd-even mixed

odd-m
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• fast ion transports (neutron emission, plasma rotations, axis movements), and drops of central ion temperature 
associated to double FB-like bursts (e.g. chirps C and D in 47128) the strongest among other FBs


• chirp C -> even-m; chirp D -> odd-m since the peak of burst, (n,m) = (1,1)?


• (1,1)-kink & even-m mode interaction

• 3D MHD sim. for NSTX case shows (1,1) mode alone could make field near qmin stochastic. 

• single bursts (e.g. chirps A & B) - near flat central q; double bursts (e.g. C & D) - reserved shear q

• likely that the presence of these two modes make the field in a reserved shear plasma more stochastic than 

other FBs

• -> cause more significant disruptions compared to single bursts

odd-m / even-m mode interactions cause disruptions 
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• the even-m modes appear after the plasma 
becomes more reserved shear


• but the frequency of mode is well below n = 1 
TAE gap


• mode doesn’t peak at qmin location


• not RSAE?


the even-m mode is unlikely to be RSAE
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chirp C 

radial & frequency ranges
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• (n,m) = (1,1) mode triggers and interact with higher  (n,m) modes (e.g. with (1,2) at q = m/n = 2)


• observed in multiple NSTX/-U case


• evidence of (1,1) + (1,2) interaction affecting confinements in MAST-U 

Possible nature of the even-m mode
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• very mild central temperature drop and no 
obvious flattening after chirp D


• tearing mode interplay model: (n,m) = (1,1) 
seeds the (1,2)


• but chirp C (even-m) appears before the 
(1,1)

but…

(n,m) = (1,2) tearing mode 
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• for example:


• new sawtooth model: (1,1)-mode keeps q > 1 and n = m = 2 mode cause crash of central temperature


• unable infernal modes in q = m/n surface flatten/lower the temp. profile without creating magnetic islands 

Possible nature of the even-m mode
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n > 1 MHD modes 

JARDIN, S. C. & KREBS, I., and FERRARO, N., A new explanation of the sawtooth phenomena in tokamaks, Phys. Plasmas 27 (2020). 

JARDIN, S. C. el al., Ideal MHD induced temperature flattening in spherical tokamaks, Phys. Plasmas 30 (2023). 

BOOZER, A. H., The rapid destruction of toroidal magnetic surfaces, Phys. Plasmas 29 (2022)

• n number identifications suggest 
chirp C in 47128 and the similar 
burst in 47132 have n = 1

q q

but…
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• (1,1) and even-m FB-like modes interactions cause significant disruption comparable to other MHD events 
(sawtooth, tearing mode, etc)


• The nature of the even-m FB-like modes is still unclear. They have similarities but don’t look exactly like tearing 
modes, sawtooth, higher order infernal modes, etc)


• Regardless of the nature of the even-m mode, the presences of mode-mode interaction and associated equilibrium 
crash bring challenges to future simulation efforts


• self-consist models need to allow evolution of equilibrium (q, mesh, magnetic island, etc) AND handle mode-mode 
interaction well to fully capture and predict the consequences of these (1,1) and even-m FB-like modes

Conclusion & open questions 
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• try measuring magnetic islands near core and |q| ~ 2 surface in future MAST-U experiments 


• MAST-U (no ECEI, alternatives needed, e.g. BES again) 


• NSTX-U: with high time-res Thomson scattering


• alternatively, identify (n,m) = (1,2)  TMs using poloidal coil array


• fast ion transport calculation and compare with diagnostics


• e.g. ORBIT-Kick interpretive calculation using input inferred from measurements, regardless the natures of the modes 


Future efforts
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• diagnostics might capture non-global effects (e.g. noise and turbulences) while FB is a global mode


• assume ;


•  x: either soft x-ray (SXR) or Beam Emission spectroscopy (BES) signal;   Lx : unknown linear function


• band pass filter is also applied to , become 


•
linear regression: 

δx(t) = Lx( ⃗δB (t)) + noise

δx(t) ̂δx (T, f )−1
filtered

δx(t)FB =
LP( ̂δx (T, f )−1

filtered * ( ̂δBz (T, f )−1
filtered)†)

LP( ̂δBz (T, f )−1
filtered * ( ̂δBz (T, f )−1

filtered)†)1/2

Linear regression model used to isolate global effects
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Line integrated tangential SXR signals are inverted 
to radial emissivities   

• SXR captures fluctuations: , where 


• inversion by assuming ,    , 

δISXR,i = ∫Li

(δε)einξdLi δϵ = ϵ0(2
δne
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+
Ephoton
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δTe
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δISXR = XC Xij =
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PjdLi

• could use the following least square method or Abel inversion (K G McClements et al 2021 Plasma Res. Express)

Pj

(backup)

R (cm)



| Henry H. Wong, NSTX-U Science Meeting, 8th of July 2024

• 2D view with ~13cm x 15cm (change slightly in different 
viewing radii)


Beam Emission Spectroscopy in MAST-U
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(backup)
I = nenbeamσ

assume , , 
I = I0 + δI ne = ne0 + δne nbeam = nbeam,0 + δnbeam
: DC part; : fast varying part.  

but NOT always the case for   and 
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