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The Spherical Tokamak Advanced Reactor (STAR) design project
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The design process for STAR involves integrating all parts of the plasma and
machine requirements

First cut engineering
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 |s the designed STAR plasma stable?

- Will ECCD/ECH be able to start-up and ramp-up the current and
temperature of the STAR plasma?

» WIll ECCD or NBI be able to drive the necessary auxiliary current
for non-inductive steady state operation?

- Will ECH or NBI be able to sustain the plasma temperature in
steady state, vs. thermal transport?

- What rotation, and radiation might be expected?
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STAR aims to operate just above the global ideal MHD n = 1 limit
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 |s the designed STAR plasma stable?

- Maybe? (Hopefully!)

- Will ECCD/ECH be able to start-up and ramp-up the current and
temperature of the STAR plasma?
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Time dependent modeling shows that start-up, burn-through, possible

Starting up: raise n,
T, current

At low density, X-l EC
absorption possible,
even at low T,

- At low density, rays
approach closer to
cyclotron resonance

Minimizing high Z
Impurities necessary
to keep P\,4 < Pecep

« Synchroton
dominates at high T,
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After start-up, the time dependent model determines a full ramp-up
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- Will ECCD/ECH be able to start-up and ramp-up the current and
temperature of the STAR plasma?

 Yes (if radiation is under control)

» WIll ECCD or NBI be able to drive the necessary auxiliary current
for non-inductive steady state operation?
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At the transition to the sustained phase, the needs for CD change

* An auxiliary current profile
was assumed to create the
target equilibrium with high
density and temperature

- When density is increased to
full level, envisioned to switch
from X-I to O-1 with a polarizer

«  (Also now switching to
TORAY/TRANSP calculations)

Or, switch to neutral beams
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Systematic assessment of ECCD from varying launch locations shows that the

necessary current profile can be achieved
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»  With higher enough beam
energy, NBl can drive on-axis
current

* 0.5 MeV led to current shortfall,
reversed g shear

« This has stability implications,
and core heating, rotation...
* NBI is a “blunter” instrument

* Matches CD generally, but not
perfectly
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Mention CIGALE beam? 13

Mention beam vs.ec pros and cons?

O PPPL J.W. Berkery, PPPL 7/22/24



owee &

» WIll ECCD or NBI be able to drive the necessary auxiliary current
for non-inductive steady state operation?

* Yes!

- Will ECH or NBI be able to sustain the plasma temperature in
steady state, vs. thermal transport?
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Balance between heating and transport is being examined by TRANSP
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The energy confinement time calculated by TRANSP is twice the ITER
scaling, but in between Petty and NSTX scalings, as projected for A =2

«  With 50 MW ECH injected power plus ~150 MW of alpha heating
Implied diffusivities from interpretive TRANSP for the given temperature
profile shows significant turbulent transport

* For NSTX, ions are typically close to neoclassical (s menard et al, Phil. Trans. A 377, 20170440 (2018)]
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The Multi-Mode Model currently predicts that turbulent transport of energy is

too high to sustain the STAR temperature profile
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- Toroidal rotation profiles estimated for STAR using a simple momentum
balance in TRANSP (not fully consistent calculation yet)
« These provide ExB shearing rates which are too low to influence turbulence

- At present, it appears that MMM predicts turbulent thermal transport will
lead to a lower temperature profile than desired

When NSTX-U returns to operations it will provide much-needed data in this gap
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» WIll ECH or NBI be able to sustain the plasma temperature in

steady state, vs. thermal transport?
* Not looking good at the moment, but much work to be done

- What rotation, and radiation might be expected?
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Radiated power may be desired (noble gases) or undesired (metals), and may

not be symmetric due to rotation

»  STEP plans to radiate - Heavy metals in NSTX can be very
about 2/3 P, with Xenon asymmetric due to centrifugal force
* For STAR, that would require * Due to lower rotation, however, W in STAR
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Some impurities radiate more at temperatures lower than STAR's core, leading

to off-axis radiation 19
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Conclusions 20

- The STAR project is investigating a spherical tokamak advanced reactor

- ECCD/ECH should be able to start-up and ramp-up the current and
temperature of the STAR plasma

- ECCD or NBI should be able to drive the necessary auxiliary current for
non-inductive steady state operation

|t remains to be seen whether ECH or NBI will be able to sustain the
plasma temperature in steady state, vs. thermal transport

Investigation with predictive TRANSP continues

»  The rotation level of STAR is not yet well known and this can affect the
predicted transport, but shouldn't lead to radiation asymmetries

- Purposeful power radiation from noble gasses requires careful study to
determine dilution and off-axis effects
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Dimensionless efficiencies
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Balance between heating and transport is being examined by TRANSP
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Efficient electron cyclotron current drive is possible with X-I at high B;

Toroidal view
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