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Overview
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• SPARC tokamak

• HEAT code

• Database for the SPARC divertor

• Machine Learning for Shadow Mask predictions

• Integration of AI-Shadow Mask into HEAT

• Results and Future work

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy 
Sciences, under Awards DE-AC02-09CH11466 . This work is partially supported by Commonwealth Fusion Systems.



SPARC tokamak
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Kuang, A., et al. Divertor heat flux challenge and mitigation in SPARC. N. p., 2020. doi:10.1017/s0022377820001117.

SPARC Primary Reference Discharge

R 1.85 m

a 0.57 m

B0 12.2 T

Ip 8.7 MA

q* 3.05 (q95 = 3.4)

𝜅sep 1.98

<Te> 7.33 keV

<ne> 3.13 1020m-3

𝜏E 0.77 s

fg 0.37

Pohmic 1.7 MW

Prf,coupled,operating 11.1 MW

Pfus 141 MW

Q 11.0 (h-mode)



SPARC divertor and PFCs (the importance of 3D PFC shaping)
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Ø Beveling, chamfering, fish scaling, and castellations are 3-D PFC shaping techniques that
reduce the risk of sublimation or melting by changing the incident angle of heat flux and
protecting vulnerable edges.

Ø 3-D features like bevels and fish scales help protect leading edges, enabling operation
under higher heat fluxes and expanding the machine's operational window while requiring
careful plasma shaping control.



SPARC divertor and PFCs
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Ø Due to its high magnetic field and compact
size, the SPARC tungsten-based divertor will
operate with conditions at or above those
expected in other tokamaks.

Ø The study of the SPARC divertor focuses on
the critical challenge of managing heat flux
during operation.

Ø Experimental results on SPARC will be crucial
to reducing risk for other devices divertors.
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HEAT Code
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Ø HEAT code predicts heat loads on plasma-facing components (PFCs).

Ø Shadow mask refers to areas on the PFCs shielded from plasma magnetic field lines
interaction.

Ø Field line tracing is used to assigned shadowed regions, as the trace progresses, the
algorithm checks for intersections with other PFC faces along the trajectory, if and
intersection is detected, the face is considered shadowed and no heat flux is assigned.

Looby, T., et. al. A Software Package for Plasma-Facing Component Analysis and Design: The Heat Flux Engineering Analysis Toolkit (HEAT), 2022. 



SPARC divertor and HEAT Code
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Looby, T., et. al. A Software Package for Plasma-Facing Component Analysis and Design: The Heat Flux Engineering Analysis Toolkit (HEAT), 2022. 

Ø HEAT uses the MAFOT code, which can trace
magnetic field lines for both 2D (axisymmetric)
and 3D plasmas.

Ø HEAT parallelizes the field line tracing and
intersection checking across multiple cores,
enhancing computational efficiency.

NSTX-U close-up view of poloidal running gap
between two PFC tiles.



Creating a Data Base
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Ø Approximately 1000 diverted equilibrium files were used.

Ø 1 divertor carrier (15 tiles) with a 1 mm mesh resolution was selected for creating the
database, more than 70,000 points.

Ø 4 equilibrium parameters were used as inputs to a NN. ORNL-FUSION EFIT toolkit code
was used to read, provide and visualize EFIT g-file data for retrieve equilibrium parameters
used as inputs ( Ip, q95 and two incident line angles Bθ/Bφ at the top and bottom of the
carrier)

Known as the T4 region 
of the divertor



Shadow Mask Predictions
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Binary Classification to Predict Shadow Mask: Shadow detection involves binary classification 
where the goal is to predict a shadow mask that identifies shadow regions ('1') and non-
shadow regions ('0’).

ML Architecture: Implemented a feedforward neural network with four hidden layers 
consisting of 100, 200, 300, and 400 nodes.

Tools Used: The model was implemented using a combination of PyTorch and Skorch to 
leverage the strengths of both frameworks in model training. MPI was used to parallelize and 
expedite the training using GPU resources (time reduction from 25 minutes to 30 seconds).



Shadow Mask predictions, good case
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Improving training time using GPU’s, from 25 minutes to 30 seconds !!! Overall R2=0.899, where R2 is the
coefficient of determination and measured how well the predicted outputs fit the actual data.



Shadow Mask predictions, good case

11



Shadow Mask predictions, not so good cases
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Heat Flux predictions
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Ø Machine Learning version of the Shadow Mask calculation was
substituted into the HEAT code which uses it to calculate the heat
flux (MW/m2 ) distribution based on the magnetic field configuration.

Ø General R2 =0.955 , each run of HEAT code reduced its time from 45 
minutes to 90 seconds using as input only 4 equilibrium parameters. 

o R2 > 0.75, 95.7% of the cases (178 cases)
o R2 <0.75, 4.3% of the cases (8 cases)

Ø The Heat run time of 90 seconds is mainly due to the overhead and
file I/O, the NN predictions itself takes some milliseconds.



Heat Flux Predictions

14Best case, R2=0.9992

ML-HEATHEAT HEAT

ML-HEAT



Heat Flux Predictions
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Not so good case, R2=0.6653
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Heat Flux Predictions
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Future work
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Ø Analysis of how these ML generated Shadow Mask patterns can be 
expanded to more regions of the divertor.

Ø Integration of AI-Shadow Mask calculation inside the Plasma Control System 
framework.

Ø Analyze SHAP values to provide detailed insights into how each input 
variable impacts the predictions of the shadow mask on PFCs.

Ø Integration of ML to predict the 3D Heat fluxes.



Where can you find more?   APS!
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• Munaretto S.: NP12.00115 Impact of error field and error field correction on 
heat fluxes in SPARC
Scotto d'Abusco S. : NP12.00119 3D heat flux modelling of rotating error 
field correction applied to the SPARC tokamak with the HEAT code
Corona D. : NP12.00120 Shadow Masks Predictions in SPARC Tokamak 
Plasma-Facing Components Using HEAT code and Machine Learning 
Methods

• All the posters will be Wednesday, October 9, 2024 9:30 AM - 12:30 PM

• Wingen A. (Thursday at 12.18pm): TO06.00015 Development and validation 
of non-axisymmetric heat flux simulations with 3D fields using the HEAT 
code.

https://meetings.aps.org/Meeting/DPP24/Session/NP12.115
https://meetings.aps.org/Meeting/DPP24/Session/NP12.115
https://meetings.aps.org/Meeting/DPP24/Session/NP12.119
https://meetings.aps.org/Meeting/DPP24/Session/NP12.119
https://meetings.aps.org/Meeting/DPP24/Session/NP12.120
https://meetings.aps.org/Meeting/DPP24/Session/NP12.120
https://meetings.aps.org/Meeting/DPP24/Session/NP12.120
https://meetings.aps.org/Meeting/DPP24/Session/NP12
https://meetings.aps.org/Meeting/DPP24/Session/TO06.15
https://meetings.aps.org/Meeting/DPP24/Session/TO06.15
https://meetings.aps.org/Meeting/DPP24/Session/TO06.15


Back up Slides
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