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The presence of 3D fields causes 3D heat fluxes on the divertor
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• Presence of error fields is unavoidable in a tokamak

• 2 of the issues with the presence of error fields are:

• reduced plasma performance

• generation of 3D heat fluxes at the divertor plates

• Plasma performances can be recovered by superimposing a 3D field that 
minimize the core resonance of the error field

• How does this impact the heat fluxes?



Outline
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Introduction
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The SPARC tokamak
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● SPARC equilibrium 1791, Ip=8.7 MA, BT=12.2 T

● Resistive MHD code M3D-C1 used to calculate 
the plasma response:
○ Spitzer resistivity
○ no plasma rotation
○ single fluid 
○ analytical ne
○ ne=ni, Te=Ti

Upside-down symmetric double null 
equilibrium



Magnetic footprints
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● 3D fields cause field lines otherwise closed to 
intersect PFC

● Swall is the distance from the HFS midplane 
along the wall in the counter clock direction

● Create a grid on the divertor and launch field 
lines toward the plasma

● Consider only those that complete a full 
poloidal turn (ie, cross the X-point) by setting a 
minimum 
connection 
length

● For each field 
line, record the 
minimum 
unperturbed 
ѰN reached



Converting footprints to heat fluxes
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In 2D the heat flux (q) profile can be described as (Eich-profile, Eich et al, PRL 2011):

The heat flux profile formulation adapted to the 3D case is (Wingen et al, NF 2021): 

major radius at the outer midplane as 
function of normalized poloidal flux heat flux layer width

private flux 
region spread

In 3D, ѰN=1 is no longer the LCFS 
q(R(1))

R(ѰLCFS)



Lcmin and ѰLCFS are calculated based on the magnetic footprint 
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• From Eich scaling #9 (Eich et al, NF 2013), 
𝛌q=0.6mm in SPARC

• In SPARC, a reasonable S=𝛌q=0.6mm



Causes of the 3D magnetic footprints
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3D fields can be produced by EFCCM
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The Error Field Correction Coils - Midplane 
(EFCCM) are a set of 6 picture frame coils 
located at R=2.93m, that extend toroidally for 
about 2m (they are not continuous). Such 
geometry results in: 

In=1=0.645 * ICOIL

ICOIL=160kA~In=1=103kA



At the max amplitude, several parts of the wall can be 
connected with inside the unperturbed separatrix
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Upper and lower divertor have similar magnetic footprints
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Looking for footprints in the divertor area every 1mm in the Swall direction and 1° in 
the toroidal direction



3D fields can be produced by 2D coils 
misalignment
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Each coil linearly scaled to the 
max allowed misalignment (2.5 
mm)

Upper and lower coil 
misalignment produce similar 
perturbations of the magnetic 
field within ~10% of each other

M3DC1 run done with 1 mm shift or 1 mrad tilt

R

2.5 m
m𝞪



Single coil misalignments produce 
small 3D footprints
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A single misalignment of a single 2D coils 
produce at most a few mm large footprint



Combining shift and tilt, the relative phase matters
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● A combined misalignment of a single 2D coils can 
produce larger or smaller footprints depending on 
the relative phase of the misalignments

● The footprint is still small (<5mm)



Heat fluxes due to error fields and 
their correction
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Combining all possible misalignment
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• There are infinite ways to combine the coil 
misalignments

• A MonteCarlo  approach is adopted where the coils are 
randomly misaligned, with some limitations:
 

• Each coil is shifted and tiled by 2.5 mm (fixed amplitude)

• Phase of PF1U shift is fixed, the other are varied randomly 
(focusing on relative phases)

• Phase variations limited to step of 15 degrees



Find the best error field correction for each case 
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• For each case, the EFCCM was applied
• EFCCM amplitude scanned form 0kA to 10kA with steps of 0.5kA
• EFCCM phase scanned form 0 to 360 deg with steps of 5 deg
• Select the EFCCM amplitude and phase that minimize the 

resonant field at q=2



EFC can lead to an increase of more than 100% in the 
peak perpendicular heat flux
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• Looking at more than 1k cases

• For each case, looking at the 
max perpendicular heat flux (q⟂)

• A convergence study showed 
that grid elements 0.1mm high 
and 32 deg large for the OSP 
provide a max q⟂ within 10% of 
finer grids (=> following 10k 
field lines instead of 360k)



3D heat fluxes calculated on a detailed grid highlight the 
changes in local q⟂ 
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• Grid elements are 0.1mm x 1deg
• EFC can increase or decrease the local q⟂
• The heat flux stays within a few cm from the unperturbed strike point location 



The change in peak heat flux in the OSP can be very different from 
that in the ISP
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• In this case the EFC reduces the peak q⟂ by about 70% at the ISP, but only by 
almost 6% at the OSP

• There are a few cases where the peak q⟂ increases on one side and decreases 
on the other

 



A more unfavorable (smaller) 𝛌q increases by an order of 
magnitude the peak heat flux
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• Eich scaling #15 predicts 
𝛌q=0.3mm in SPARC

• A stricter choice for S is 
S=𝛌q/2=0.15mm

• The peak heat flux 
increases by an order of 
magnitude

• The variation in peak 
heat flux also increases



A smaller 𝛌q leads to heat deposition on a smaller area 
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• A smaller 𝛌q and S lead to a smaller deposition area and therefore a higher peak 
heat flux

• EFC can still increase or decrease the peak heat flux and ISP and OSP can still 
have different behaviour

• The SOL width remains transport dominated for such small 3D perturbations



Conclusions and future work
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Conclusions
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• The presence of error fields is unavoidable in tokamaks, and they modify the 
heat flux deposition on the divertor

• Correcting the core component of the error fields can lead to an increase of 
the peak heat flux by more than 2 times

• An increase/decrease of the peak heat flux on the Outer Strike Point does 
not always correspond to an increase/decrease on the Inner Strike Point

• The possible range of peak heat fluxes due to error fields is not affected by 
the error field correction

• Transport still plays an important role on determining the SOL width for such 
small 3D perturbations



What is next?
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• Can we minimize both the resonant field and the peak heat flux using also 
EFCCU and EFCCL?

• Is there any dependence on the equilibrium chosen?

• How would this change if we consider 
the realistic 3D PFC instead of a 2D PFC?


