
TORAX - A Fast and
Differentiable Tokamak
Transport Simulator in JAX
Jonathan Citrin, Sebastian Bodenstein,
Anushan Fernando, Ian Goodfellow, Philippe Hamel,
Tamara Norman, Akhil Raju, Craig Donner, Federico Felici,
Andrea Huber, David Pfau, Brendan Tracey
Google DeepMind

Devon Battaglia, Anna Teplukhina, Josiah Wai
Commonwealth Fusion Systems

Photo by Khyati Trehan for Google DeepMind on Unsplash

https://unsplash.com/@googledeepmind?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-view-of-a-town-from-a-window-eEVPSeup4OY?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Science Portfolio at Google DeepMind

● Apply AI/ML to tackle challenging problems in science with significant impact

● Track record of open science for societal benefit (e.g. AlphaFold)

Fusion at GDM

● Building on success of deep
reinforcement learning for pulse +
magnetic controller design

● Next: multiphysics, fast and accurate
simulation environment for
multi-objective optimization

Confidential - Google DeepMind

TORAX is our new differentiable tokamak
core transport simulator built in Python
using JAX, solving for core temperatures,
density, and current diffusion

Outline

TORAX and JAX overview 01
Detailed model description 02
Benchmarks vs RAPTOR 03
Outlook 04

TORAX and JAX overview

1

● Core transport code
○ Heat and particle transport,

current diffusion

● Python
○ Core solver is with JAX

■ Just-in-time compiled (fast)
■ Autodifferentiable

● Numerics
○ Finite-volume discretization
○ Implicit timestep PDE solver

■ Predictor-corrector method
■ Nonlinear solver with Newton-Raphson

● Physics
○ Analytical models + ML-surrogates for speed
○ Also supports standard integrated modelling mode with

flexible model coupling and JAX optionally disabled

TORAX is a differentiable tokamak core transport simulator aimed for fast and accurate
forward modelling, pulse-design, trajectory optimization, and controller design workflows

ITER baseline scenario with QLKNN10D.
Parameters based on Mantica PPCF 2020

TORAX motivated by requirements for pulse simulation, planning, and
controller design tasks

🚀 Fast and accurate forward modelling

📐 Differentiable for accurate nonlinear PDE solvers, gradient-driven optimization and
 parameter identification

🤖 Easy incorporation of physics model ML-surrogates; higher fidelity simulation without sacrificing speed

📦 Modularity for coupling within various workflows and to additional physics models.

Building on ideas developed over many years in the fusion community for tokamak scenario modeling, pulse
planning, and control [RAPTOR, JINTRAC, ASTRA, TRANSP, etc]

TORAX a natural evolution of the approach pioneered by RAPTOR,
with advantages

● JAX auto-differentiation instead of manually derived Jacobians as in RAPTOR [Felici PPCF 2012]
○ Easy to extend simulator with any complex analytical model, e.g. ML surrogates
○ Easy to extend sensitivity analysis with new parameter inputs

● ML-surrogate coupling facilitated by JAX’s inherent support for NN development and inference
○ Combine "medium/high fidelity" accuracy with "low fidelity" speed

● Python-as-a-feature
○ Freely available and widespread
○ Development velocity
○ Facilitates coupling within various simulation environments

● Running on accelerators (GPU) enables large-scale batch simulations

JAX enables fast compiled and differentiable simulation with NumPy-like API

● JAX, originally developed by Google, is "NumPy on the CPU, GPU, TPU" (https://jax.readthedocs.io/)
○ Originally developed for AI/ML. Increasing applied for scientific computing

● Uses an updated version of Autograd to automatically differentiate NumPy-like code
○ Automatic transformation of functions to their analytic derivatives

● Uses TensorFlow's XLA (Accelerated Linear Algebra) JIT (just in time) compiler for speed
○ Same code can run seamlessly on CPU or accelerators

● Functions can be transformed into just-in-time (jit) compiled versions
○ e.g. jitted_sum_logistic = jax.jit(sum_logistic)

● Compile time overheads; for TORAX O(compile-time) ≈ O(run-time)
○ Mitigated by compilation caching on memory or persistent (disk)

● In TORAX, bottleneck functions are JAX, e.g. PDE residual calculation + its Jacobian.
○ Glue code, control-flow, pre+post processing is standard Python.

Eases development + coupling to wider frameworks.

Simple example of JAX function transformation

TORAX open-source with permissive Apache 2.0 license

● Open source launch in June 2024
○ https://github.com/google-deepmind/torax

● Technical report + online documentation
○ torax.readthedocs.io
○ https://arxiv.org/abs/2406.06718

Detailed model description

2● Governing equations
● Implementation of numerics
● Physics models

Includes "roadmaps" for planned work ahead.

Not exhaustive and does not include possible additional
contributions from wider community, e.g. coupling new
ML-surrogates of physics models

● Polymorphic data input (xarray, numpy, Python
primitives) for setting initial conditions, and optional
"prescribed" profiles chosen not to be evolved by
PDE system

● Zero-gradient boundary conditions on axis.
Ti, Te, ne: Dirichlet boundary conditions at edge
ψ: Neumann boundary condition at edge (Ip)

● Zeff radial profile with single impurity.

Governing equations: set of 1D flux-surface-averaged nonlinear transport PDEs

Ion and electron heat equations

Electron density equation

Current diffusion equation

Roadmap

● Vloop boundary condition for ψ: sets ψLCFS(t+Δt)
(WIP by UKAEA)

● Extension to multiple ions/impurities evolution

● Momentum transport

Spatial discretization: finite-volume-method with bespoke JAX fvm package

● TORAX JAX fvm package inspired by FiPy1 and uses similar API

● Evolving profiles are CellVariable class with various helper methods, different options
for boundary conditions, etc.

● For particle convection, power-law α-weighting scheme based on Péclet number

● Constructs nonlinear/linear systems of equations for solvers based on solution method

1 https://www.ctcms.nist.gov/fipy/

Temporal discretization and composition of system numerically solved

Governing equations more generally decomposed as follows

Theta method, first-order in time.
θ=1, fully-implicit (default)

● x is state vector, subset of {Ti, Te, ne, ψ}, at time t or t+Δt
● is the "transient term", e.g. V'5/3ni in ion heat equation
● is the discretization matrix, including (possibly state-dependent) physics

quantities like transport coefficients, geometry, etc.
● c is vector with source terms + boundary condition terms
● u corresponds to all "known" or quantities at time t and t+Δt , e.g. boundary

conditions, heating amplitude trajectories, prescribed profiles, etc.

Solver methods

● Linear solver: replace xt+Δt with xt in , , c

● Predictor corrector: fixed point iteration for k (user-defined) steps on
xt+Δt in , , c, starting from initial guess xt

● Newton-Raphson nonlinear solver: iterative root finding for residual

Where R is the LHS-RHS of (1)

● Cast as optimization problem for xt+Δt , i.e. minimize loss = R2 , using JAX
optimization libraries, e.g. jaxopt (relatively unexplored)

(1)

Newton-Raphson illustration: simple example with heat diffusion

Fully implicit simple nonlinear diffusion equation

Discretize and define nonlinear system
of equations to be solved (residual)

Newton-Raphson: starting from initial guess of Told
(e.g. Tk), iteratively solve linear system for Tnew , until
R(Tnew,Tk) within tolerance

● TORAX has simple linesearch to ensure
good Newton steps (physical Tnew), as well
as Δt backtracking if no convergence

All the physics goes into the residual function,
and then JAX magic

Presently implemented physics models/couplings: geometry

● Ad-hoc analytical "circular" geometry with elongation
● Numerical equilibria from Grad-Shafranov solvers

○ Flux surface averaged geometric quantities
○ Supports CHEASE, MEQ (FBT), EQDSK (Adam Kit @ VTT)

● Various initialization options
○ ψ directly from geometry file: can rescale to desired Ip
○ ψ consistent with user-provided current profile

● Assumes input sequence of pre-calculated equilibria.

Roadmap

● Short-term: Initialize ψ based on q-profile

● IMAS equilibrium IDS input - need to wait for IMAS open-sourcing

● Medium term: Support inter-timestep coupling with GS solver for self-consistency with transport solution
○ Ideally with ML-surrogate to maintain speed

Presently implemented physics models/couplings: transport

● Turbulent Transport
○ Ad-hoc: constant coefficients, ITG Critical-Gradient-Model based on Guo Romanelli 1993
○ BohmGyroBohm semi-empirical model (Theo Brown @ UKAEA)
○ QuaLiKiz-neural-network (QLKNN10D hypercube version [van de Plassche 2020])
○ QuaLiKiz ("standard" integrated modelling mode with JAX-compilation disabled)

● Supports inner/outer transport patches + Gaussian smoothing kernel (important for convergence)

● Prescribed pedestal height and width maintained by adaptive source term

● Neoclassical resistivity and bootstrap current

Roadmap
● QLKNN11D under development based on existing dataset [https://zenodo.org/records/8011148]
● H-factor scaling models
● Neoclassical transport

○ e.g. FACIT for heavy impurities once impurity transport implemented
● Adaptive transport coefficients for pedestal as opposed to adaptive source
● Sawtooth and NTM models
● Couple more ML-surrogates from community, e.g. TGLF, higher-fidelity GK surrogates

● DT fusion power (Bosch-Hale + Mikkelsen fraction power model)
● Ohmic power
● Equipartition (ion-electron heat exchange)
● Bremsstrahlung
● Lin-Liu model for ECCD with prescribed Gaussian heat deposition profile (Theo Brown @ UKAEA)
● Supports generic formulas (e.g. gaussian, exponential) for ad-hoc heat, particle, current sources
● TORIC-NN for SPARC configuration space (Greg Wallace @ MIT) - imminent

Non-JAX source models can be included as "explicit_sources", e.g. calculated outside step function using xt state
and passed as an argument into the PDE solver, with the rest of the PDE still solved with JAX.

Presently implemented physics models/couplings: sources

Roadmap
● Cyclotron radiation
● Line radiation and charge-state-equilibria models
● Couple additional ML-surrogates from community

Comparison with other integrated modelling suites
e.g. JETTO/ASTRA RAPTOR TORAX

Coding language Fortran MATLAB Python w/JAX

Linear solver +
predictor-corrector

Yes No Yes

Newton-Raphson nonlinear
solver

No Yes Yes

Discretization FVM FEM FVM

Time-stepping Adaptive Deterministic Adaptive or deterministic

Differentiable No Yes: manual Yes: automatic

ML-surrogate coupling Bespoke Fortran interface Mex-files from Fortran Python w/JAX

Range of physics models Broad, high-fidelity, no restriction
(apart from speed)

Parameterized: formulas,
ML-surrogates

Any: analytical models + ML-surrogates can be
in JAX kernel. Non-JAX models can be injected
into kernel as explicit terms

High-fidelity models can still be coupled into
solver kernel: JAX compilation can be disabled.
Allows evaluation of ML-surrogates against
ground truth within the same framework

Runtimes and solver comparison

Runtime and solver comparisons for a 80s ITER hybrid
scenario rampup using the QLKNN transport model.

● Faster than realtime for this config

● Multi-step predictor-corrector can be
attractive solver mode when gradient
information from Jacobian not needed

● Still some low hanging fruit for runtime
performance optimization

TORAX config design facilitates use and coupling in
various workflows

● Config imported from Python module
○ Allows pre-processing of input data in standard Python
○ Hierarchical nested CONFIG dict passed into TORAX,

which then constructs all simulation runtime_params

● Flexibility in prescribed input data
○ Can have any time resolution. Interpolated to correct time

at every TORAX (non-deterministic) timestep
○ Data structures can be Python primitives, numpy, xarray
○ IMAS coupling facilitated by existing open-source IMAS <->

xarray libraries. Future work.

Benchmarks vs RAPTOR

3

Verification: TORAX vs RAPTOR agreement for
ITER-like cases

Modeling settings:

● ITER hybrid-scenario inspired params
● Nonlinear Newton-Raphson solver
● L-mode
● Heat transport + current diffusion
● CHEASE equilibrium
● 20MW ECRH at flat top: modulated
● Constant transport coefficients
● No sawteeth

Verification: TORAX vs RAPTOR agreement on SPARC H-mode scenario

* K.L. van de Plassche et al., PoP 2020

Δt=0.2s: RAPTOR walltime: ~70s , TORAX walltime: ~14s

Modeling settings:

● SPARC full-pulse H-mode
● Nonlinear Newton-Raphson solver
● Heat transport + current diffusion
● Sequence of FBT equilibria
● 11MW ICRH at flat top
● QLKNN10D* ML-surrogate transport
● No sawteeth

Outlook

4

Roadmap: towards higher physics fidelity and pulse planning applications

Short term developments

➢ Finalize RAPTOR parity
○ Sawteeth
○ End-to-end

differentiable simulation
with Forward Sensitivity
Analysis

➢ Coupling to the CFS MOSAIC
Pulse Planner (see Wai,
Battaglia, APS 2024)

➢ Enable use for STEP (UKAEA)
○ Benchmarks with JETTO

Priorities for improved physics

➢ Multi-ion + impurity transport
○ Line radiation
○ Neoclassical transport

➢ Improved ML-surrogates
○ Turbulence
○ Pedestal
○ Sources
○ Edge

➢ Core-edge integration

Validation against data

➢ Open source datasets for
integrated modelling validation
highly valuable

➢ Motivated to engage in
community effort for this goal

Calculating the Jacobian of the PDE system residual, with respect to any arbitrary
simulation parameter, is greatly facilitated by autodiff

From Felici PhD 2011 (https://infoscience.epfl.ch/record/168656?ln=en) and Felici PPCF 2012

State xk+1 solves residual at time k , e.g. with iterative Newton method.
u is control input, parameterized by p (e.g. ECCD power waveform)

Forward Sensitivity Analysis method

We want , , how the solution changes with respect to a control input
modification.

Linear system above is recursively solved starting from initial condition

All f derivatives known and come from autodiff!

Key tool for sensitivity analysis, data-driven parameter identification, trajectory optimization methods

Summary

● TORAX, a new Python-based core transport code
○ With JAX: Fast for many-query applications, and autodifferentiable
○ Targeted for easy coupling to range of ML-surrogates
○ Verified against RAPTOR

● Open-source for wider community impact
○ Glad to support use and applications
○ Glad to support integration of new physics models and ML-surrogates
○ Open source data for validation; keen to engage community on this effort

● Can couple to broader fusion simulation frameworks
○ Speed supports various applications in forward and inverse modelling

● Excited to see TORAX in action!

https://arxiv.org/abs/2406.06718
https://github.com/google-deepmind/torax
https://torax.readthedocs.io

