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Science Portfolio at Google DeepMind

e Apply Al/ML to tackle challenging problems in science with significant impact

e Track record of open science for societal benefit (e.g. AlphaFold)
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Fusion at GDM

e Building on success of deep
reinforcement learning for pulse +
magnetic controller design

e Next: multiphysics, fast and accurate
simulation environment for
multi-objective optimization
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TORAX is our new differentiable tokamak
core transport simulator built in Python

using JAX, solving for core temperatures,
density, and current diffusion
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TORAX and JAX overview
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TORAX is a differentiable tokamak core transport simulator aimed for fast and accurate
forward modelling, pulse-design, trajectory optimization, and controller design workflows

y C‘;re tlza;:tp;’r:é;‘;‘:ﬁde transport ITER baseline scenario with QLKNN10D.
. . ’ Parameters based on Mantica PPCF 2020
current diffusion
e Python 3 : x H
o  Core solver is with JAX B e
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e Numerics

o  Finite-volume discretization

o Implicit timestep PDE solver
m Predictor-corrector method
m  Nonlinear solver with Newton-Raphson

Physics
o  Analytical models + ML-surrogates for speed
o Also supports standard integrated modelling mode with
flexible model coupling and JAX optionally disabled



TORAX motivated by requirements for pulse simulation, planning, and
controller design tasks

« Fast and accurate forward modelling

~, Differentiable for accurate nonlinear PDE solvers, gradient-driven optimization and
parameter identification

g Easy incorporation of physics model ML-surrogates; higher fidelity simulation without sacrificing speed

W Modularity for coupling within various workflows and to additional physics models.

Building on ideas developed over many years in the fusion community for tokamak scenario modeling, pulse
planning, and control [RAPTOR, JINTRAC, ASTRA, TRANSP, etc]



TORAX a natural evolution of the approach pioneered by RAPTOR,
with advantages

JAX auto-differentiation instead of manually derived Jacobians as in RAPTOR [Felici PPCF 2012]
o Easy to extend simulator with any complex analytical model, e.g. ML surrogates
o Easy to extend sensitivity analysis with new parameter inputs

ML-surrogate coupling facilitated by JAX’s inherent support for NN development and inference
o  Combine "medium/high fidelity" accuracy with "low fidelity" speed

Python-as-a-feature
o Freely available and widespread
o Development velocity
o  Facilitates coupling within various simulation environments

Running on accelerators (GPU) enables large-scale batch simulations



JAX enables fast compiled and differentiable simulation with NumPy-like API

e JAX, originally developed by Google, is "NumPy on the CPU, GPU, TPU" (https://jax.readthedocs.io/)
o  Originally developed for Al/ML. Increasing applied for scientific computing

e Uses an updated version of Autograd to automatically differentiate NumPy-like code
o Automatic transformation of functions to their analytic derivatives

e Uses TensorFlow's XLA (Accelerated Linear Algebra) JIT (just in time) compiler for speed
o Same code can run seamlessly on CPU or accelerators




Simple example of JAX function transformation

def sum_logistic(x):
return jnp.sum(1.0 / (1.0 + jnp.exp(-x)))

x_small = jnp.arange(3.)
derivative_fn = grad(sum_logistic)
print(derivative fn(x_small))

[0.25 0.19661194 0.10499357]

e Functions can be transformed into just-in-time (jit) compiled versions
o e.g.jitted_sum_logistic = jax.jit(sum_logistic)

e Compile time overheads; for TORAX O(compile-time) = O(run-time)
o  Mitigated by compilation caching on memory or persistent (disk)

e InTORAX, bottleneck functions are JAX, e.g. PDE residual calculation + its Jacobian.
o  Glue code, control-flow, pre+post processing is standard Python.
Eases development + coupling to wider frameworks.




TORAX open-source with permissive Apache 2.0 license

e Open source launch in June 2024
o https://github.com/google-deepmind/torax

e Technical report + online documentation
o torax.readthedocs.io
o https://arxiv.org/abs/2406.06718

Quickstart to Running and Plotting

Frequently A tions (FAQ)

Tutorials
Development Roadmap

ntributing to TORAX

# / TORAX: Tokamak transport simulation in JAX

View page source

TORAX: Tokamak transport simulation in JAX

TORAX s a differentiable tokamak core transport simulator aimed for fast and accurate forward
modelling, pulse-design, trajectory optimization, and controller design workflows. TORAX is written

in Python using the JAX library.

Flexible

Python facilitates coupling
within various workflows
and to additional physics
models. Easy to install and
JAX can seamlessly execute
on multiple backends
including CPU and GPU.

46 Getting Started

Fast and auto-differentiable
JAX provides just-in-time
compilation for fast
runtimes. JAX auto-
differentiability enables
gradient-based nonlinear
PDE solvers and simulation
sensitivity analysis while
avoiding the need to
manually derive Jacobians.

| B User Guides
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Copyright 2024, The TORAX Authors.

ML:surrogate coupling for
fast and accurate simulation
is greatly facilitated by JAX's
inherent support for neural
network development and
inference.
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Detailed model description

e (Governing equations
e Implementation of numerics
e Physics models

Includes "roadmaps” for planned work ahead.
Not exhaustive and does not include possible additional

contributions from wider community, e.g. coupling new
ML-surrogates of physics models




Governing equations: set of 1D flux-surface-averaged nonlinear transport PDEs

lon and electron heat equations
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Polymorphic data input (xarray, numpy, Python
primitives) for setting initial conditions, and optional
"prescribed" profiles chosen not to be evolved by
PDE system

Zero-gradient boundary conditions on axis.
T, T,, n_: Dirichlet boundary conditions at edge
Y: Neumann boundary condition at edge (Ip)

Z_.. radial profile with single impurity.

Roadmap

V 000 POUNdary condition for : sets Y, .(t+At)
(WIP by UKAEA)

e  Extension to multiple ions/impurities evolution

e  Momentum transport




Spatial discretization: finite-volume-method with bespoke JAX fvm package

Finite Volume Discretization (1D)
@-&2 @+LR
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e TORAXJAX fvm package inspired by FiPy'and uses similar AP

e Evolving profiles are CellVariable class with various helper methods, different options
for boundary conditions, etc.

e For particle convection, power-law a-weighting scheme based on Péclet number

e Constructs nonlinear/linear systems of equations for solvers based on solution method

Thttps://www.ctcms.nist.gov/fipy/



Temporal discretization and composition of system numerically solved

Theta method, first-order in time.
=1, fully-implicit (default) Teyar—oe = AL[OF (Terar, t+AL)+(1—0) F (24, 1)

Governing equations more generally decomposed as follows

gvl—S/B (% 2‘{;’ ;_)/) [v'ﬁ/’%,, T] T(Ilﬁt+At-. Ut+AL) ® Xe+At — T(Jt ut) O Xt =
ot dp =
10 g1 8T, At [H(C(l’t+m, Ut At)Xe+At + C(TepAt, Ut+At))
W% {Xi”iﬁt)_ ~ o4 T] £ Qz - (1 = 9) (C(.’Et, ut)xt + C(.’Et, "U.t))]

e Xxis state vector, subset of {T, T, n_, ¢}, at time t or t+At

e Tisthe "transient term", e.g. V& n. in ion heat equation

e Cis the discretization matrix, |nclud|ng (possibly state-dependent) physics
quantities like transport coefficients, geometry, etc.

e cisvector with source terms + boundary condition terms

e u corresponds to all "known" or quantities at time t and t+At, e.g. boundary
conditions, heating amplitude trajectories, prescribed profiles, etc.



Solver methods

'i‘(-’lf-t-i-Atx Ut+AL) © XetAt — 'i'(JJt. ut) @ Xt =
At [e(é(l’t-i-ma U+ At)Xe+ At + C(TepAt, ‘Ut+At)) (1
+ (1 b 0) (C(.’I:t, 'Ut)Xt + C(.’l-'t, "U.t))]

e Linear solver: replace x, ,, with x,inT ,C, ¢

e Predictor corrector: fixed point iteration for k (user-defined) steps on

X, INT,C, €, starting from initial guess x,

e Newton-Raphson nonlinear solver: iterative root finding for residual
R(Xt+At-. X¢, Wpg Aty Uy, 0, At) =0

Where R is the LHS-RHS of (1)

e Cast as optimization problem for x, ., i.e. minimize loss = R?, using JAX
optimization libraries, e.g. jaxopt (relatively unexplored)



Newton-Raphson illustration: simple example with heat diffusion

0Ty 0 0T)+1 o . o .
- = T S(T: Fully implicit simple nonlinear diffusion equation
5% o (X( k1) o ) T (Th+1)

Tri1— T " Discretize and define nonlinear system

At - A(X(TkH ))Tk+1 - S(Tk+1) = R(Tk+1 ) Tk) =0 o equations to be solved (residual)

- - Newton-Raphson: starting from initial guess of T_,
(Tnew — Told) — (0 (e.g.T)), iteratively solve linear system for T__ , until
old) R(TneW,Tk) within tolerance

— [a—

R(Toiq, Tx) + J |

All the physics goes into the residual function, e TORAX has simple linesearch to ensure
and then JAX magic good Newton steps (physical T __ ), as well
as At backtracking if no convergence

jacobian jax.jacfwd(residual)




Presently implemented physics models/couplings: geometry

O
O

Ad-hoc analytical "circular" geometry with elongation
Numerical equilibria from Grad-Shafranov solvers

Flux surface averaged geometric quantities
Supports CHEASE, MEQ (FBT), EQDSK (Adam Kit @ VTT)

e Various initialization options

O
O

Y directly from geometry file: can rescale to desired Ip
U consistent with user-provided current profile

e Assumes input sequence of pre-calculated equilibria.

Roadmap

o

e  Short-term: Initialize Y based on g-profile
e  IMAS equilibrium IDS input - need to wait for IMAS open-sourcing

e  Medium term: Support inter-timestep coupling with GS solver for self-consistency with transport solution

Ideally with ML-surrogate to maintain speed




Presently implemented physics models/couplings: transport

e Turbulent Transport

Ad-hoc: constant coefficients, ITG Critical-Gradient-Model based on Guo Romanelli 1993
BohmGyroBohm semi-empirical model (Theo Brown @ UKAEA)
QualiKiz-neural-network (QLKNN10D hypercube version [van de Plassche 2020])
QualiKiz ("standard" integrated modelling mode with JAX-compilation disabled)

o O O O

e Supports inner/outer transport patches + Gaussian smoothing kernel (important for convergence)
e Prescribed pedestal height and width maintained by adaptive source term

e Neoclassical resistivity and bootstrap current

Roadmap
e  QLKNN11D under development based on existing dataset [https://zenodo.org/records/8011148]
® H-factor scaling models
® Neoclassical transport
O  e.g. FACIT for heavy impurities once impurity transport implemented

Adaptive transport coefficients for pedestal as opposed to adaptive source
Sawtooth and NTM models
e  Couple more ML-surrogates from community, e.g. TGLF, higher-fidelity GK surrogates




Presently implemented physics models/couplings: sources

DT fusion power (Bosch-Hale + Mikkelsen fraction power model)

Ohmic power

Equipartition (ion-electron heat exchange)

Bremsstrahlung

Lin-Liu model for ECCD with prescribed Gaussian heat deposition profile (Theo Brown @ UKAEA)
Supports generic formulas (e.g. gaussian, exponential) for ad-hoc heat, particle, current sources
TORIC-NN for SPARC configuration space (Greg Wallace @ MIT) - imminent

Non-JAX source models can be included as "explicit_sources”, e.g. calculated outside step function using x, state
and passed as an argument into the PDE solver, with the rest of the PDE still solved with JAX.

Roadmap
®  Cyclotron radiation

® Line radiation and charge-state-equilibria models
e  Couple additional ML-surrogates from community




Comparison with other integrated modelling suites

Coding language

Linear solver +
predictor-corrector

Newton-Raphson nonlinear
solver

Discretization

Time-stepping

Differentiable
ML-surrogate coupling

Range of physics models

e.g. JETTO/ASTRA

Fortran

Yes

No

FVM
Adaptive
No
Bespoke Fortran interface

Broad, high-fidelity, no restriction
(apart from speed)

RAPTOR
MATLAB

No

Yes

FEM
Deterministic
Yes: manual
Mex-files from Fortran

Parameterized: formulas,
ML-surrogates

TORAX
Python w/JAX

Yes

Yes

FVM
Adaptive or deterministic
Yes: automatic
Python w/JAX

Any: analytical models + ML-surrogates can be
in JAX kernel. Non-JAX models can be injected
into kernel as explicit terms

High-fidelity models can still be coupled into
solver kernel: JAX compilation can be disabled.
Allows evaluation of ML-surrogates against
ground truth within the same framework



Runtimes and solver comparison

>
54 < 201 et i TABLE I. TORAX Simulation Performance Comparison
; 1 l;m —— Predictor-Corrector (10 steps)
%3' 2231 Solver Compile [s] Runtime [s]
‘g § 101 Newton-Raphson 15.6 22
gz- T g | Predictor-Corrector (1 step) 4.5 6.5
s 14— iii::ii:iEEZ:EEZISS‘;ZLS, g 0- Predictor-Corrector (10 steps) 4.6 8
00 02 04 06 08 10 © 00 02 04 06 08 10
Normalized Radius () Normalized Radius (p)
T Ly | e napmson / Runtime and solver comparisons for a 80s ITER hybrid
g 0.20 =~ v —— Predictor-Corrector (1 step) . .
S 2 | — precictorcomector (10 steps) scenario rampup using the QLKNN transport model.
So1s <101
g 010 - ; e Faster than realtime for this config
a : 1 ~—— Newton-Raphson E ]
§ — ’F\"redftcto:(:g:‘recfor(l step) &
Boosi—tmommamiem) M op—" e  Multi-step predictor-corrector can be
00 02 04 06 08 10 00 02 04 06 08 10 ; )
Normalized Radius (5) Normalized Radius (5) attractive solver mode when gradient

information from Jacobian not needed

FIG. 5. Comparison of simulated T;, Te, ne, and v profiles at

t = 10 s for the Newton-Raphson, Predictor-Corrector (1 step), ° Still some low hanging fruit for runtime
and .Predlctor—Corrector (10 steps) solvers, using the example iter- performance optimization
hybrid_rampup.py configuration.



TORAX config design facilitates use and coupling in
various workflows

e Config imported from Python module

@)
@)

Allows pre-processing of input data in standard Python
Hierarchical nested CONFIG dict passed into TORAX,
which then constructs all simulation runtime_params

e Flexibility in prescribed input data

(@]

Can have any time resolution. Interpolated to correct time
at every TORAX (non-deterministic) timestep

Data structures can be Python primitives, numpy, xarray
IMAS coupling facilitated by existing open-source IMAS <->
xarray libraries. Future work.

# numpy versions of prescribed gquantities
Ip = (LY_times, LY_Ip)

ne = (tgrid, rhogauss, ne_time dependent)
Te_initial = (rhogauss, Te_initial values)
Ti_initial = (rhogauss, Ti_initial values)

Tped = (tgrid, Tped)

ne_bound_right = (tgrid, ne_time_dependent[:, -1])

CONFIG =

'runtime params': {
'plasma_composition': {

}

‘profile_conditions': {

+

"Ai': 2.9,
VZeff'!: Zeff,
‘Zimp': Zimp,

‘Ip': Ip,

‘initial_psi_from_j': True,

'initial j is total current': True,

nufoa,

'Ti': Ti_initial, # Initial condition only
"Ti_bound_right': T_rhoedge,

'Te': Te_initial, # Initial condition only
‘Te_bound_right': T_rhoedge,

‘ne_1s_fGw': False,

‘normalize to nbar': False,

‘ne’': ne,

"ne_beund_right': ne_bound_right,

"set_pedestal': ({9: False, t_LH: True, t_HL:

‘Tiped': Tped,
‘Teped': Tped,
"Ped_top': 0.95,

"numerics': (

't_final": 11.0;
‘exact_t_final': True,
'fixed _dt': 0.2
'ion_heat_eq': True,
'el_heat_eq': True,
‘current_eq': True,
‘dens_eq': False,

False},

'STEP'),



Benchmarks vs RAPTOR




Verification: TORAX vs RAPTOR agreement for
ITER-like cases

% Timetrace of average T.: NRMSD = 4.01% _ Timetrace of average T;: NRMSD = 3.56%
= 3.0 >
o =
‘g 2.5 g 2.0
[} b . .
25 il 3 Modeling settings:
@ g 1.5
§151 e . . .
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Verification: TORAX vs RAPTOR agreement on SPARC H-mode scenario
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—-— RAPTOR Popm
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L
2 61 —— RAPTOR T,
£ --- RAPTORT;
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Simulation time [s]
Line-averaged density timetraces
T 2.8
£
& 2.61
=
224 —— RAPTOR
w
€221 —— TORAX
o
S 2.0
o
9 1.84
w
00 25 50 7.5 10.0

Simulation time [s]

At=0.2s: RAPTOR walltime: ~70s , TORAX walltime: ~14s

Modeling settings:

SPARC full-pulse H-mode

Nonlinear Newton-Raphson solver
Heat transport + current diffusion
Sequence of FBT equilibria

1MMW ICRH at flat top

QLKNN10D* ML-surrogate transport
No sawteeth

*K.L. van de Plassche et al., PoP 2020
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Roadmap: towards higher physics fidelity and pulse planning applications

Short term developments

> Finalize RAPTOR parity
o  Sawteeth
o End-to-end
differentiable simulation
with Forward Sensitivity
Analysis

> Coupling to the CFS MOSAIC
Pulse Planner (see Wai,
Battaglia, APS 2024)

>  Enable use for STEP (UKAEA)
o  Benchmarks with JETTO

Priorities for improved physics

> Multi-ion + impurity transport
o Line radiation
o Neoclassical transport

> Improved ML-surrogates
Turbulence
Pedestal

Sources

Edge

o O O O

>  Core-edge integration

Validation against data

>

Open source datasets for
integrated modelling validation
highly valuable

Motivated to engage in
community effort for this goal



Calculating the Jacobian of the PDE system residual, with respect to any arbitrary
simulation parameter, is greatly facilitated by autodiff

State x, , solves residual at time k, e.g. with iterative Newton method.
u is control input, parameterized by p (e.g. ECCD power waveform)

.fk —— _f:(.l';l-+1..l.‘k.. up) =0 Vk 4
Forward Sensitivity Analysis method g
 dfy Ofr Oxper  Ofx Oxr  Ofi Our  Of *
0= = - , = A T

dp  Oxpyr Op dxp. dp  Oup dp  Ip i
Jrpsq

We want dp , how the solution changes with respect to a control input
modification.

Linear system above is recursively solved starting from initial condition ((._)'I;’

All f derivatives known and come from autodiff!

Key tool for sensitivity analysis, data-driven parameter identification, trajectory optimization methods

From Felici PhD 2011 ( https://infoscience.epfl.ch/record/168656?In=en) and Felici PPCF 2012



Summary

e TORAX, a new Python-based core transport code

o  With JAX: Fast for many-query applications, and autodifferentiable

o Targeted for easy coupling to range of ML-surrogates

o Verified against RAPTOR
e Open-source for wider community impact

o Glad to support use and applications

o Glad to support integration of new physics models and ML-surrogates

o Open source data for validation; keen to engage community on this effort
e Can couple to broader fusion simulation frameworks

o Speed supports various applications in forward and inverse modelling
e Excited to see TORAX in action!

O https://arxiv.org/abs/2406.06718

https://github.com/google-deepmind/torax
https://torax.readthedocs.io

CRAX



