

Effective SOL particle lifetime, generation of SOLC and effects on the edge

M.A. Jaworski, U-Illinois

J. Kallman(PPPL), H. Takahashi(PPPL), E.D. Fredrickson(PPPL), S. Gerhardt(PPPL), R. Kaita(PPPL), H. Kugel(PPPL), V. Soukhanovskii(LLNL), S. Zweben(PPPL) and the NSTX Research Team

> **NSTX FY2010 Research Forum B318, Princeton, NJ December 1-3rd, 2009**

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching

ASCR, Czech Rep

U Quebec

Culham Sci Ctr

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U

LLNL Lodestar

LANL

MIT

Nova Photonics New York U

Old Dominion U

ORNL

PPPL PSI

Princeton U

Purdue U SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Illinois

U Maryland

U Rochester **U Washington**

U Wisconsin

XP goals and benefits

- Commissioning of triple probe capability for dense probe array
 - U-Illinois biasing and data acquisition
- SOL plasma parameters and regime change
 - Gas puffing as transient control for SOL regime
 - Dependence of pumping on temperature (particle control milestone)
 - Gas species change as means of returning to high recycling plasma (future lithium studies)
 - Plasma at divertor target profile measurements
- Measurement of SOLC in NSTX (comparison to DIII-D)
 - Magnitude, spatially and temporally resolved
 - Axisymmetric or non-axisymmetric
 - Dependence on lithium pumping effectiveness
 - Controllable?
- Broader effects of SOLC
 - ELM correlation? Causation?
 - Dynamic error fields?
 - Edge and pedestal response?
- Provides measurements of Li wall conditioning effects tied to parameters testable on other machines ($\nu^*_{_{SL}}$, $\tau^*_{_{pSL}}$)

Attempt to excite non-axisymmetric SOLC with gas puffing and monitor with divertor Langmuir probes

- Dense array provides high spatial resolution
 - Addresses DIII-D spatial resolution issue
 - Triple probe system provides time resolved signals up to 125kHz (n_e, T_e, V_f)
 - Swept probes used as complementary measurements and aid interpretation
 - Limited set will be configured for direct SOLC measurements
 - Supplemented with halo sensors and BEaP for greater toroidal coverage
- Existing inboard probes to provide measure of inboard target temperature and density
- Temporal resolution of triple probes will measure density pump-out rate, $\tau^*_{\mathfrak{p}s}$
 - Local puffs decoupled from core transport changes

Run plan (1 day total)

- Make use of commissioning and decommissioning shots in piggyback
 - Monitor plasma conditions during Li deposition
 - Determine if a critical density is found for sheath-limited operation in intermediate- and low- δ discharges
 - Monitor for SOLC and any relation to SOL collisionality
- Dedicated run time (24+ shots)
 - Use lower dome gas injection to puff in D2 and perform scan around any determined critical density (9 shots) (3 cold, 3 normal, 3 hot)
 - Repeat in intermediate- and low-δ discharges
 (+9 shots) (3 code, 3 normal, 3 hot)
 - Compare with non-pumping gas: He (+6 shots)
 (2 cold, 2 normal, 2 hot + development)
 - Does liquid lithium pump He?
 - How much?

Backup

Overview

Background

- Scrape-off-layer currents (SOLC) observed on DIII-D and linked to ELMs (causal?)
 and other MHD events
- Strongly pumped SOL may reach sheath-limited regime and reduce or eliminate thermoelectric drive mechanism for SOLC
- Gas puffs can be used to create TE drive for controlled periods of time (SOL particle lifetime)
- SOLC on demand provides new and unique tool for edge studies

Goals

- Measure SOL plasma parameters at divertor targets during Li operation
- $_{-}$ Determine particle lifetime $\tau^*_{_{DSD}}$ (susceptibility to density fluctuations)
- Measure or search for SOLC and associated effects

Milestones

- Li research R11-3 milestone on understanding the relationship between lithium surface conditions (pumping efficacy) and edge and core conditions
- Boundary Physics R10-3 on understanding relationship between ELMs and lithium conditioning

Background: Why measure a new particle lifetime? And why are SOLC important?

- Effective SOL particle lifetime:
 - Local perturbation to the divertor via gas puff (i.e. poor core fueling efficiency) is decoupled from any alterations to core transport
 - Determine, *directly*, effect of strong pumping on SOL perturbations (how fast are they pumped out)
- Scrape-off-layer currents
 - Measured on DIII-D
 - Several theories regarding relation between SOLC and edge recently proposed
 - SOLC-ELM causal relationship (Takahashi EPS 2005)
 - Coupling relation between PB and SOLC (Zheng PRL 2008)
 - Dynamic error field production and ergodization SOLC of the edge (Takahashi NF 2004, Evans JNM 2009)
 - Expanded divertor probe and sensor coverage makes extensive measurements possible in NSTX

Overview

- Lithium wall conditioning already seen to pump discharges
- Effectiveness of lithium pumping surfaces may be linked to edge parameters via:
 - Thermoelectric scrape-off-layer currents (TE-SOLC)
 - Fast reduction (pump-out) of density perturbations
 - Reduction of potential for thermal instabilities at the surface feeding back into TE-SOLC and other SOL perturbations (ergodized edge)
 - How do wall conditions reach out from a few microns of wall toward the core?

Goals:

- Characterize lithium PFC pumping effectiveness via $\tau^*_{_{p,SL}}$ (effective particle lifetime) for cold (T<T $_{_{net}}$), normal and hot (T>350C)
- Monitor effect of pump-out on SOL regime and SOLC
- Correlate perturbation of SOL and SOLC to edge and global parameters
- Develop non-pumping He shot to "recover" non-pumping discharge for comparison

Strongly pumped edge makes ideal test-bed

- Edge pumping with lithium already seen to reduce SOL density
 - Simple two-point model predicts reduction in parallel temperature gradients with reduced $\nu^*_{_{SL}}$
 - Transition from conduction limited to sheath-limited at n~2e18m³ depending on mid-plane temperature
- Reduced temperature gradients should affect TE based SOLC
 - Reduction of drive term as $T_{in}/T_{\alpha t} \rightarrow 1$
- Particle lifetime, $\tau^*_{\mathfrak{pSD}}$, determines density perturbation lifetime
 - Provides controlled means of changing target temperatures transiently
 - On/Off control of SOLC?

R. Maingi, APS 2009 Invited Oral

Re-attachment of inboard divertor already observed as collisionality decreased. (Soukhanovskii APS 2009)

Addressing questions raised

- Claim: SOLC primarily generated by thermoelectric SOL effects
 - Measure T_e on inboard and outboard as density decreases alongside SOLC during quiescent MHD period
- Claim: SOLC generate dynamic error fields (Takahashi 2004)
 - Correlate direct measurements of SOLC with magnetics
 - Look for toroidal braking effects
 - Axi- vs. non-axisymmetric
- Claim: SOLC provide coupling mechanism for edge perturbation leading to ELM (Zheng 2008) vs. SOLC causes the ELM (Takahashi 2008)
 - Generate SOLC transiently (axi- vs. non-axisymmetric)
 - ELM immediately? ELM after critical time?
 - Edge plasma perturbation due to change from non-recycling to simulated recycling
- Claim: ELM/edge perturbation causes TE-SOLC (Evans 2009) vs. unstable hot spot formation (Pigarov 2009)
 - Correlation between midplane density rise and divertor density rise
 - Chicken and egg scenario

10

Indications in NSTX

- Examine Langmuir probe current at zero-voltage bias (machine wall potential)
- ELMing discharge before lithium deposition, ELM-free in 129038
- Same scales on SOLC and D-alpha signals in shot comparison
- Poor signal resolution due to sweep frequency
- Interpretation of SOLC signal during ELMs problematic need better spatial and temporal resolution
- General reduction in SOLC without ELMs, drastic change in private flux region

