Proposals for 2010 XPs

- 1. H-mode TAE (GAE) avalanches
- 2. Documentation of Angelfish
- 3. Document high frequency CAE
- 4. Revisit again n=3 braking and affect on TAE stability?

H-mode TAE Avalanches w/BES

- Need to extend L-mode TAE avalanche studies to H-mode.
- H-mode avalanches are seen with full voltage beams, no difficulty getting MSE data.
- Measure fast ion redistribution, mode amplitudes, equilibrium parameters (qevolution).
- Maybe avalanche threshold

TAE avalanches similar in H-mode

- TAE avalanche-like behavior seen in many H-modes
- Often, neutron drops are weak.
- 'Sharper' bursts are GAE avalanche-like events.
- Reproduce target like this with beam voltage scan to find thresholds.

GAE avalanches in H/L-mode

Use BES & new reflectometer diagnostics to measure

mode structure and amplitude.

Peak amplitude lasts ≈10 µs out of 5 ms period. :

Could be piggyback on TAE avalanche XPs.

135419

GAE avalanches in H/L-mode

Bursts can trigger TAE avalanches; implies significant

redistribution of fast ions

Sometimes trigger EPM, too.

Measure radial structure of Angelfish

- Dedicated experiment; operation at 32 kA, 2.5 kG where best Angelfish were seen.
- Typically best Angelfish in bat-ear H-modes, so no reflectometer data.
- BES should be able to capture mode, good MSE data would be worth effort.
- Maybe FIDA might see something if fast enough (0.5ms chirps every couple of ms)

Angel fish GAE or CAE?

- Polarization measurements are not definitive.
- So far, most examples with up-down chirps were 3 kG.

High-frequency CAE

- These modes typically appear with n=1 kink mode, possibly as a result of fast ion redistribution.
 - Frequency spacing, mode numbers consistent with CAE.
 - Propagate co-parallel to beams, $8 \le n \le 13$.
 - Few fast ions in unperturbed distribution meet resonance condition.
- Probably pick up in piggy-back, but might need dedicated run-day

Early modes present when kink present around 200 ms, Ip < 800 kA?

- Here, modes with n = 9 through n = 13 are identified.
- There is some delay, suggesting diffusion plays a role in fast ion redistribution responsible for mode drive.
- Alfvénic early modes don't seem to have similar effect.
- Fast ions originate from core region?

N=3 Braking

- Some data, e.g., 132758 132769, but avalanches and TAE not that good.
- Spend a day developing good avalanche target, incl. small Ip and TF scan.
- Then add braking.
- This XP cannot be done in piggy-back, needs at least one full day.

Add Coil for TAE excitation?

- Add simple ≈5 turn coil as shown ≈15 cm x 80 cm, # turns tbd
- Very similar to C-Mod coil (15cm x 25cm, 5 turns, 400 W amplifier)
- Possible to add this opening, if we think it's worth pursuing

Proposed XP's

- 1. 3-wave coupling with n=3 error field (NC)
- 2. Affect of TAE induced transport on rotation, NBCD (stability scaling)
- 3. 'High density' TAE in monotonic H-mode plasmas.
- 4. Search for KAWs
- Reversed field FIDA validation XP
- 6. HHFW acceleration of fast ions
- 7. HHFW on chirping (Sharapov EP?) (see 6).
- 8. EPM(fishbone) fast ion transport
- eGAM search (reversed Ip)
- 10. Code validation TAE experiment
- 11. EPMs (see 8)
- 12. Marginal stability conditions for TAE
- 13. Characterize low frequency modes
- 14. Effect of HHFW on plasma rotation
- 15. HHFW interaction with fast ions (see 6&7)
- 16. HEF

Additional XP's not covered

- Fast ion transport by turbulence
- Document amplitude/structure of high frequency *AE in electron transport studies.

Proposed XP's

- 3-wave coupling with n=3 error field
- Affect of TAE induced transport on rotation, NBCD (stability scaling)
- 'High density' TAE in monotonic H-mode plasmas.