Dynamics of Zonal Flow-Drift Wave System Preceding L-H Transition

T. Munsat, Y. Sechrest (Univ. Colorado), S. Zweben (PPPL)

Overview: Examine the dynamic interactions between the zonal flows and drift wave turbulence leading up to the L-H transition, and study the dependence on input power and density.

Highlights:

- •Operate near L-H transition power threshold with NBI
 - Look for Limit-Cycle oscillations in ZF and turbulence
 - Slow down transition to illuminate/resolve dynamics
- Diagnose edge flows & turbulence preceding L-H transition
 - GPI measurements
 - Corroborate with BES & reflectometer
 - Look for Long Range Correlations

Background and Motivation

Kim & Diamond L-H transition model

- Zonal Flow-Drift Wave interaction limits turbulence amplitude
 - Limit-Cycle behavior
- •Mean flow shear develops as input power and pressure gradient increase
- •H-Mode: Mean flow shear extinguishes turbulence and zonal flow
- •Mean/Zonal Flows play key role in bifurcation
- Experimental evidence supports this picture
 - Increase of E_r well-depth at transition
 - Absence of ZF features in H-Mode
 - •Limit-cycle observed in recent studies on TJ-II and ASDEX-U
- Few studies have been done to observe the dynamics of edge flows and turbulence near transition power threshold

Recent Evidence on Other Devices

University of Colorado at Bor

Experiments on NSTX

2009 XP results:

- L-H transition captured by GPI
- Periodic modulation of turbulent bursts correlated with edge flow
- Evidence of Zonal Flows

Proposed XP:

- Diagnose edge flows and turbulence using GPI
- Corroborate with BES & reflect.
- LRC between GPI and BES data
 - Confirmation of ZF
- Look for limit-cycle behavior
- [kHz] Phase shifted oscillations of ZF amp. and turbulence
- Look for scaling with density
 - Lower density -> more intense oscillations

University of Colorado at Bo

Experimental Plan

• Operate NSTX with NBI heating near transition threshold

- Start with most reliable NBI H-mode (not necessarily lowest threshold), similar to 135042 for example
- Run as close to 95-100% threshold power as possible
- -1-2 shots at >100% P_{threshold} for contrasting behavior
- Scan downward in density to enhance limit-cycle oscillations
- Diagnostics: GPI, BES, Reflectometer : shared flux surfaces near separatrix required for LRC
 - Excellent diagnostic set for looking at edge turbulence behavior in higher detail than previous studies
- Later in run for reliable L-H operation
- Request: 0.5 run day

