

Supported by Lection Science Surgery Sciences Sciences

Edge island imaging and ELM stability modification using a vertically shifted plasma

College W&M
Colorado Sch Mines
Columbia U
CompX

General Atomics

INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Washington

U Wisconsin

D.J. Battaglia, M. Shafer

Oak Ridge National Laboratory, Oak Ridge, TN

NSTX Research Forum Princeton, NJ March 15 – 18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec

Experiments on NSTX showed a modification, but not suppression, of ELMs using 3D perturbations

S.A. Sabbagh et. al., *Workshop: Modeling of plasma effects of applied resonant magnetic perturbations*, San Diego, CA Aug, 2008

Decrease in ELM frequency at maximum allowed field

DIII-D experiments demonstrated ELM suppression using a single row of off-midplane coils

ELM suppression using internal, offmidplane coils

 Successful with both single row and two rows

Not successful with external midplane coil

 Amplitude of perturbation chosen so resonant amplitude similar

- Attributed to a wider island overlap region
 - Large aperture → increased low-m coupling

ME Fenstermacher, et al. Nucl Fusion 48 (2008)

Shifted shape leads to reduced non-resonant fields compared to standard NSTX shape

XP1030: Investigate response to 3D fields from off-midplane coil

- Δz ~ -25 cm achieved
 - 600 kA, 4.5 kG
 - Limited by length of PF3U segment
 - Limited by PF1A multiplier
- Administratively limited to 2MW NBI
 - Not many type-I ELMs
 - Tried different fueling schemes
 - Non-shifted plasma at 4MW was sufficiently ELMy
- Did not apply n=3 fields above EFC level

LRDFIT04 142263 0.299000 s LRDFIT04 142263 0.701000 s

Shifted shape is stable and global parameters are typical for a 2MW NBI discharge

Shifted shape is stable and global parameters are typical for a 2MW NBI discharge

Potential to image induced edge resonant islands with SXR camera

- Resonant perturbation → may open up edge island chains
 - Island widths depend on plasma shielding (or amplification)
- SXR imaging of induced island structure pursued on DIII-D and NSTX
 - Image X-points where islands are largest
 - Validate models of plasma response to 3D fields
- NSTX is well-suited to make this measurement.
 - ST has great tangential viewing access
 - Ample SXR signal in edge
 - High- β and rotation \rightarrow expect significant shielding
 - SXR diagnostic will be upgraded for 2011/12
 - Smaller pinhole, thinner filter

Use shifted shape for two 1/2 XPs

ELM stability modification

- Shot 142263 with low or no lithium
- May need more than 2MW to induce ELMs
- Scan static n=3 field amplitude from shot to shot
- If time, repeat with different q₉₅

Edge island imaging

- ELM-free with 2MW and/or aggressive lithium
- 75Hz n=2 rotating magnetic field perturbation
- Use SXR camera, divertor cameras, divertor tangential view camera
- Try different q₉₅
- Puff high-Z gas if time
- Interest from others: off axis NBI, off axis diagnostics