

Early H-mode impurity confinement reduction combined with snowflake for impurity and density control

College W&M
Colorado Sch Mines
Columbia U
CompX

General Atomics

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Illinois

U Maryland

o maryiana

U Rochester
U Washington

U Wisconsin

J. Menard + other willing participants

NSTX FY2011-12 Research Forum LSB B318, PPPL March 17, 2010

*This work supported by US DoE contract DE-AC02-09CH11466

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC** Kurchatov Inst TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching

ASCR, Czech Rep

U Quebec

Overview

- Goal: Achieve stationary D, C inventories in flat-top <u>without</u> flat-top ELMs (paced or natural)
- Approach: Combine early impurity expulsion (t < 0.3s)
 with later impurity source reduction (snowflake, ...)
- Background:
 - Lithium ELM-free H-modes commonly exhibit a rapid C impurity accumulation from t=0.15 to 0.3s.
 - Shortly after the early H-mode transition, there is typically a rapid build-up of C near the plasma edge which then slowly diffuses inward during the current flat-top.
 - Previously, upward magnetic balance excursions have been useful for triggering early ELMs to flush some of the edge C and reduce the overall C inventory.

XP1005: modified bias of fiducial plasma after early H-mode reduces plasma density, radiated power, flux consumption

XP1005: Bias change from -7mm to 0 reduces impurity confinement and/or generation and reduces C $Z_{\rm eff}$ by -1

Like 2009 result, size of H-mode C impurity "ear" near t=0.3s influences late Z_{eff}

Motivates testing combinations of this + snowflake + divertor D puff + SGI + ...

Carbon Z_{eff}

Experimental Approaches (1)

(2 run days requested, 1 day minimum)

- Attempt to reproduce early upward DRSEP excursion triggering of ELM to reduce C density ear after early H-mode (0.5 day)
- During the current ramp-up, or during the early I_P flat-top, reduce the inner gap toward/to zero briefly to induce an ELM/H-L back-transition to expel C impurities (0.3 day)
 - Vary how hard and how long plasma is pushed onto CS
 - The NBI heating and beta may need to be reduced/modified during this time to avoid pressure-peaking disruption.
- Delay the early H-mode by reducing the inner gap and maintaining a (nearly) IBD limited plasma (0.5 day)
 - Then pull LSN early during I_P flat-top to transition to H-mode.
 - Keep HFS gas timing fixed at early H-mode timing to densify plasma before H-mode transition.
 - Again, the NBI heating and beta may need to be reduced/modified during this time to avoid pressure-peaking disruption.

Additional details on delaying H-mode

- Keeping plasma on CS until 0.2s + delayed low P_{NBI} is/was recipe for high-performance RS L-mode - example below:
- Try similar approach for L→H:
 - Start from fiducial-like shot, but at 0.7-0.8MA to maintain long pulse
 - Use inner gap control to keep plasma (nearly) limited
 - Use inner gap increase and maybe
 I_P flat-spot to trigger H-mode, and
 scan the H-mode transition time
 - Reduce/modify early NBI heating to avoid beta limit as necessary
- Assess impurity evolution
- Then try re-attaching to CS, assess impact of back-transition

From XP538 "RS scenario developed by Stutman and Levinton to establish a plasma suitable for HHFW operation"

Experimental Approaches (2)

- Similarly, attempt to trigger ELM during ramp-up/very early flat-top with large RMP pulse: try n=3 and n=2 RMP (0.5 day).
 - Scan the amplitude and timing of the pulses since q₉₅ is varying rapidly during the ramp-up.
 - Is ELM triggering with n=3 and/or 2 more difficult early in flat-top?
 - This part could possibly be done jointly with other proposals that use RMP pulses later in the shot for ELM pacing
- Assuming one of the above techniques works reliably, transition from a high-delta fiducial plasma shape in the flattop to high-delta snow-flake divertor shape (0.2 day)
 - Aim is to reduce the peak heat flux and impurity source late in shot
- Compare plasma impurity and main-ion density evolution to fiducial plasma evolution

