

Comparison of Diverted Plasmas Incident on Lithiated Molybdenum and Graphite Surfaces

For Research Milestone R(12-1) and NSTX-U Planning

College W&M
Colorado Sch Mines
Columbia U

CompX

General Atomics

INEL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Washington

U Wisconsin

H. W. Kugel, V. Soukhanovskii, M. Jaworski....

NSTX Research Forum March 15-18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Overview of 2010 and 2011-2012 Lithium Conditions

2010 Experimental Campaign

- Liquid Lithium Divertor (LLD) on outer divertor, partially heated only during special experiments, cold at other times.
- Continual lithium deposition 10-40mg/min for 10 mins between discharges, or up to 260g (3 days) for special experiments.
- LLD endured 5 argon vents, continual redeposition of outward sputtered C and Li from inboard operation (J. Brooks simulation).
- Evidence of significant buildup (strata) of Li and C complexes on surface of LLD (Some indications that Li did not enter deeply into LLD porosity).
- LLD plates appear to have become ungrounded early in the run due to disruption currents possibly resulting in intermittent biasing.

2011-2012 Experimental Campaign

- LLD supports and grounding upgraded, no active heating, only plasma autoheating (~10°C/shot).
- Molybdenum tiles on outer-row of inner divertor.
- 2008-type LITER depositions, typ. ~10-20 mg/min between discharges.

2010 Lithium Results Summary

- Early work by McCracken, Erents, and others found fast deuterium retention in clean solid lithium and liquid lithium to be close to unity for a clean lithium surface.
- Results from laboratory studies after TFTR and NSTX 2006-2009 for solid Li on graphite, suggested that the retention of D in solid NSTX Li might be limited to less than unity due to: (1) Li intercalation in graphite, (2) Li interactions with impurities in graphite,
- (3) Li reactions with vacuum gases, and (4)
- D saturation of the Li, surface layers, and that probably liquid Li would provide more retention for longer durations.

Figure 3. Trapping efficiency of lithium for 18 keV deuterons as a function of temperature for constant dose of 5×10^{17} ions/cm².

- However, the 2010 LLD results based on the <u>required fueling for stable discharges</u> imply comparable solid and liquid Li pumping under NSTX conditions.
- Question: In NSTX, are the 2010 D retention percentages in solid Li and liquid Li both near unity (Ω) , or both much less than unity (λ) ?

Early in the Run, With Minimal Li Deposition, and Constant Fueling: XP to Compare 4 LSN Plasmas Incident on Lithiated-Molybdenum and Lithiated-Graphite Divertor

Day-1: Begin with Both LSN Strike Points on Mo-LLD and Mo (IBD-tile)

- Day-1 Measurement Plan (30 shots)
 - Early in Run, LITER 20 mg/min, constant fueling
 - Let LLD plasma auto-heat 10°C per shot
 - As LLD transitions through Li melting (180°C) measure:
 - Waveform of Core D and C⁶⁺ particle content
 - Electron density rate of rise
 - Li, CII, OII, Mo, Prad waveforms
 - Fast IR front face temperature waveforms
 - LP array and edge turbulence measurements
 - ELM characteristics
 - Global wall pumping characteristics
 - Scan fueling to determine effect of IBD detachment

Day-2: Move Strike Points Inward and Repeat

3. Snowflake-minus

4. Standard IBD SPs on ATJ

- Day-2 Measurement Plan (10 shots per case)
 - Early in Run, LITER 20 mg/min, constant fueling
 - Waveform of Core D and C⁶⁺ particle content
 - Electron density rate of rise
 - Li, CII, CIII, OII, Prad waveforms
 - Fast IR front face temperature waveforms
 - LP array and edge turbulence measurements
 - ELM characteristics
 - Global wall pumping characteristics

Summary of Questions to Be Investigated by this XP as D is Diverted from Lithiated Mo to Lithiated Graphite

- How does the core D content change as the divertor substrate is changed?
- How does the core C⁶⁺ content change as the carbon sputtering term is changed?
- How much of the electron density rate of rise is due to the divertor sputtering source?
- How do Li, CII, CIII, OII, Mo, Prad waveforms vary during the discharge as the surface heats?
- How do the Fast IR front face temperature waveforms change for the different lithiated substrates?
- Under quiescent $D\alpha$ conditions, can local recycling coefficients be measured using LP array Isat/ $D\alpha$ ratios?
- How do ELM stability characteristics change as sputtering and edge fueling change?
- How do the global wall pumping characteristics change as the lithiated substrate changes?

