

Supported by

Recycling, pumping and impurity studies with lithium-coated molybdenum PFCs

College W&M
Colorado Sch Mines
Columbia U
CompX

General Atomics

INEL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Washington

U Wisconsin

V. A. Soukhanovskii for the postdoctoral research staff member being hired (LLNL)

Acknowledgements: NSTX Team

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec

Culham Sci Ctr

Plasma-surface interaction with lithium-coated molybdenum PFCs will be studied in this XP

- Three main deliverables anticipated
 - Recycling in inner and outer divertor strike point regions
 - Lithium coating longevity and interaction with ion fluxes in outer strike point region
 - Molybdenum erosion from lithium-coated divertor molybdenum targets and molybdenum core screening
 - (Carbon sources in Scotti's XP)

... as functions of lithium coating thickness, SOL power, divertor ion flux density

- Connect with LITER 2008 and LLD 2010 analysis
- Provide information for NSTX-U PFC options and lithium strategies
- Connect with other divertor tokamak experience
 - Alcator C-Mod all molybdenum PFCs with boron coatings and lithium pellet PFC conditioning
 - ASDEX-Upgrade mixed tungsten and graphite PFCs and boron coatings

2 of 5

Vary power, ion flux density and lithium rate to study lithium-coated moly PFC

- High-triangularity configuration with PF1B and carbon (inner) and moly (outer) targets, I_p=0.8-0.9 MA, ELM-free?
- Study neutral, ion, impurity (Li, C, Mo) fluxes and particle balance as functions of
 - LITER rate (10-300 mg / shot)
 - NBI power (1-6 MW)
 - Steady-state ion density values (n_d ~ 1-6 x 10¹⁹ m⁻³ by HFS+SGI)
 - Response of SOL and/or divertor density to source perturbation
 - Use SGI gas pulses to measure "pumpout" times
- Develop shot sequence vs lithium deposition strategy to document lithium coating life-time

 Repeat if possible in lowtriangularity configuration with moly (inner) and LLD (outer) targets

Diagnostic set well suited for divertor recycling and Li, C, Mo erosion measurements

Key diagnostics

- D_{α} , lithium and carbon EIES and cameras for full poloidal coverage
- Neutral pressure gauges
- Langmuir probes
- Divertor spectrometers for moly flux profiles
- Core soft X-ray and VUV spectroscopy (SPRED, Lowes, Xeus)

Spectroscopic method to measure particle fluxes is well developed (e.g., Mo here, but applicable to recycling, Li and C fluxes)

- Prominent Mo I spectral line triplet will be measured with DIMS and VIPS 2 spectrometers
- ADAS S/XB atomic factors will be used to convert spectroscopic measurements to $\Gamma_{\rm molv}$
 - S/XB is a weak function of T_e and n_e

Molybdenum erosion can be significant due to self- and impurity sputtering

SGI singular gas pulses will be used to measure "pump-out" (edge " $\tau_{\text{p}}^{\ }$ ")

- Measure dynamic SOL density response to singular flat-top SGI pulses ("pumpout") at various Li temperatures, plasma densities
 - Use FIReTIP channel 7 (R_{tang} ~ 150 cm) at midplane (n_e)
 - Use divertor Langmuir probes (Γ_i, n_e)
 - Use neutral pressure gauges $(\Gamma_{n_1} n_0)$
- Example Two shots compared
 - 14 mg/min Li evaporation, 10 min clock cycle
 - HFS at 700 Torr + SGI
 - Higher SGI and lower SGI fueling rate
- Accordingly, higher N_e, N_d and lower N_e,
 N_d obtained
 - Carbon inventory the same (not shown)
- Divertor D_{α} and Langmuir Probe I_{sat} correlated with SGI pulses, showed density pump-out

Discharges without lithium conditioning never showed pump-out with SGI singular gas pulses

