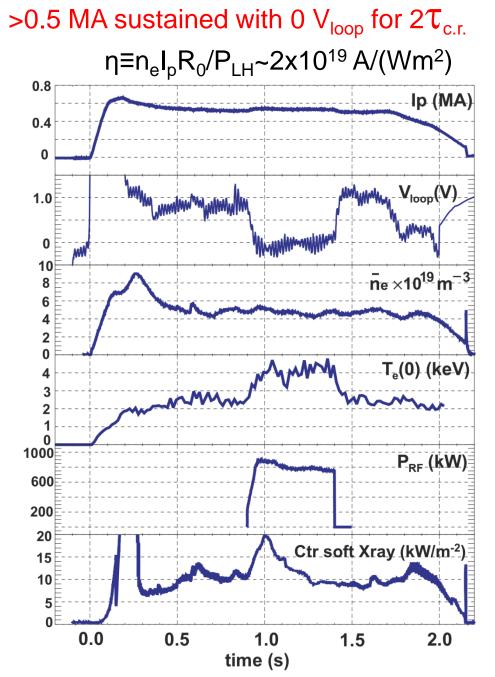

Alcator C-Mod Highlights, Plans and Collaboration Opportunities

NSTX Forum March 15, 2011

E. S. Marmar for the Alcator Group

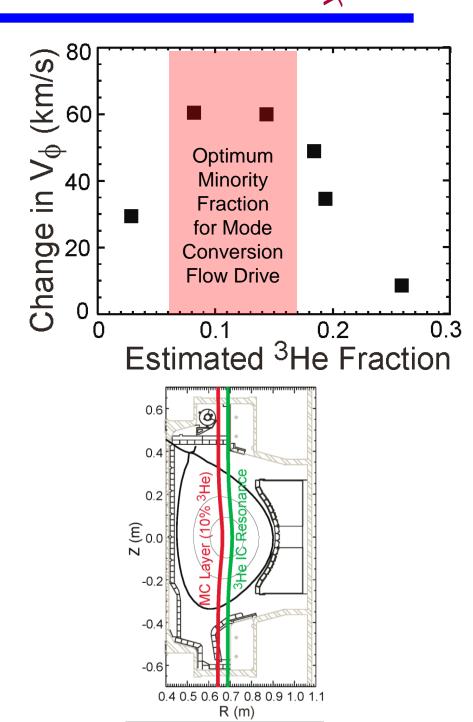
Compact highperformance divertor tokamak research to establish the plasma physics and engineering necessary for a burning plasma tokamak experiment and for attractive fusion reactors.

C-Mod research program focuses on areas of unique capability, ITER relevance



- Broad science campaign, with particular emphasis on ITER needs and requests.
- Experiments exploit key C-Mod features, eg.
 - Solid metal walls; Mo, W: D retention and recovery
 - High divertor heat fluxes: Power handling, impurity generation.
 - High density and neutral opacity: Pedestals and n_e control.
 - ICRF and LHCD at ITER B_T, density: H&CD physics
 - Transport studies in electron dominated regimes: ITER and reactor relevant
 - High pressure (<P> up to 1.8 atm): Disruption mitigation
- Tokamak Facility and Auxiliary Systems are operating at full performance, with high reliability
 - Completed 21 research weeks in FY2010
 - So far, completed 12.2 (of 15 planned) research weeks in FY2011

Recent Research Highlights



- Many new and interesting results from recent research operations
 - Lower Hybrid Current Drive
 - Intrinsic and driven flows, momentum transport
 - I-mode
 - Neon and nitrogen seeded plasmas (all regimes)
 - H-mode pedestal physics (FY11 joint research milestone)
 - Disruption mitigation
 - ITER discharge development
 - Impurity/particle transport
 - Edge/SOL turbulence
 - Gyro-kinetic modeling of core turbulence measurements
 - SOL transport, divertor heat flux (FY10 joint research milestone)

Recent Research Highlights

- Many new and interesting results from recent research operations
 - Lower Hybrid Current Drive
 - Intrinsic and driven flows, momentum transport
 - I-mode
 - Neon and nitrogen seeded plasmas (all regimes)
 - H-mode pedestal physics (FY11 joint research milestone)
 - Disruption mitigation
 - B-coated Mo tile operation
 - ITER discharge development
 - Impurity/particle transport
 - Edge/SOL turbulence
 - Gyro-kinetic modeling of core turbulence measurements
 - SOL transport, divertor heat flux (FY10 joint research milestone)

lcator

Mod

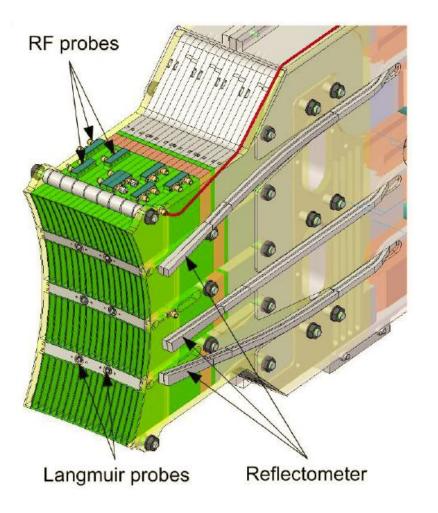
Collaborators are key participants in all aspects of the program

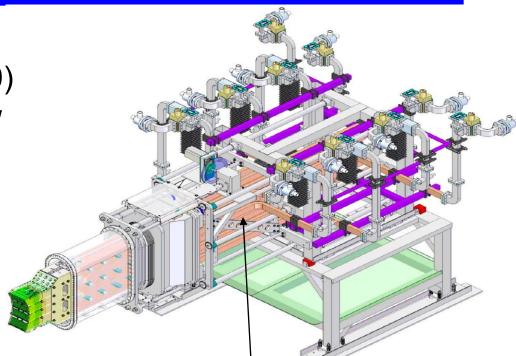
Domestic

Princeton Plasma Physics Lab U. Texas FRC **UC-Davis UC-Los Angeles UC-San Diego** CompX Dartmouth U. **General Atomics** I I NI Lodestar LANL **U.** Maryland **MIT-PSFC** Theory NYU ORNL **PPPL** Theory Purdue U. SNLA U. Texas IFS

International

ASIPP/EAST Hefei C.E.A. Cadarache C.R.P.P. Lausanne Culham Centre for Fusion Energy **ENFA/Frascati** FOM Nieuwegein, Netherlands IGI Padua **IPP** Garching **IPP** Greifswald **ITER** Organization Cadarache JET/EFDA JT60-U, JAEA KFA Jülich **KFKI-RMKI** Budapest **KSTAR Korea** LHD/NIFS Oxford U. Politecnico di Torino Royal Institute of Technology Stockholm U. Tokyo U. Toronto U. Tromso Norway

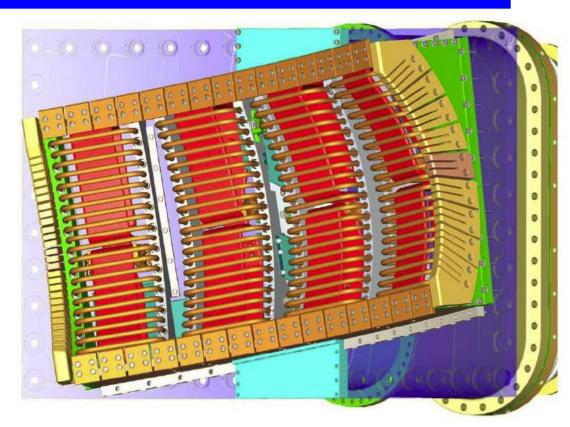

Coordination: FFCC, USBPO, TTF, ITPA, IEA


Facility Plans and Major Enhancements

Lower Hybrid upgrades

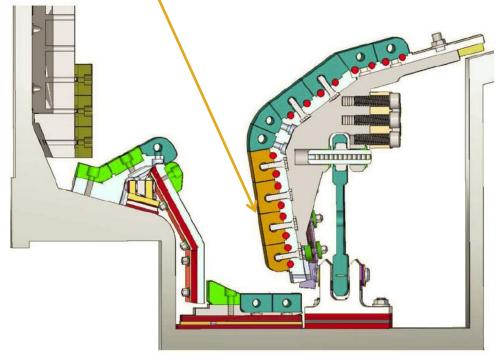
- 7 new klystrons @ 0.25 MW ('10)
- Additional launcher and 4'th MW ('13)

Standard waveguide and flanges



16x4 wave guide array

Facility Plans and Major Enhancements


- ICRF upgrades
 - New 4-strap antenna ('11)
 - Rotated/aligned with
 B
 - Reduce RF
 induced E_{||}
 sheath, high-Z
 impurity sources
 - Fast-Ferrite Tuners for all
 4 transmitters (real time adaptive tuning) ('11-'12)
 - Power supply + fast
 opening switch upgrade
 (with DTI SBIR) ('11)

Facility Plans and Major Enhancements (cont'd)

- Outer divertor upgrade DEMO-like divertor ('13) (joint with PPPL)
 - Continuous vertical plate (higher power/energy handling, reduced EM loads)
 - Tungsten lamella plate tiles in high heat-flux region
 - High temperature (~ 600 °C)
 - Long pulse operations
 - Hydrogen isotope retention studies

Major Diagnostic Enhancements/Upgrades 2011-2013

Alcator

-**1//**00

- QCM (*shoelace*) Antenna ('11)
- In-Situ Accelerator* [first wall analysis] ('11)
- ICRF SOL Reflectometer (with ORNL) ('11)
- High Resolution X-ray Crystal upgrades ('11)
- Fast Ion loss diagnostics ('11-'12)
- PCI upgrades to detect LH waves* ('11-'12)
- Polarimetry (with UCLA) [j(r), n_e(r), magnetic fluctuations] ('11-'12)
- Ion Temperature Probes ('12)
- Correlation ECE ('12)
- New Gas Puff Imaging views (with PPPL) ('12)
- Lyman- α poloidal array (LH power loss) ('12)
- SOL Thomson Scattering ('12-'13)
- Two Color Interferometer upgrades ('12-'13)
- Doppler Reflectometry ('13)
- Core Soft X-Ray Diode Imaging upgrade ('13)
- High Resolution X-Ray Spectroscopy upgrade ('13)
- Lyman- α upgrade (CX power loss) ('13)

*Primarily funded through OFES Diagnostic Initiatives

- Development of fluctuation measurements and further upgrades in core profile measurements – development of corresponding synthetic diagnostics.
- JRT 2012: Detailed comparisons with theory and modeling, especially simultaneous comparisons of energy (ion and electron) and particle (and impurity) channels.
- Exploration of origin and impact of self-generated rotation
- Exploitation of RF tools to control transport through modification of current or rotation profiles

Research priorities: Pedestal

- Compare pedestal structure and transport with available models, code predictions
- Identify stability boundaries for growth rates for MHD modes across various pedestal regimes
- Relation of particle, thermal transport to fluctuations, ExB shear suppression in H-modes and I-mode
- Explore pedestal and ELM modification by external means, including RF tools and driven magnetic perturbations
- Study trigger conditions for H-mode transitions, relating edge profile characteristics to power thresholds and assessing the effects of hidden variables

- Employ techniques to modify/probe edge turbulence, both to enhance tokamak operation and to uncover turbulence dynamics (spectral coupling, particle, energy and momentum fluxes) - link to transport and modeling
- Develop/optimize impurity seeding tools for mitigation of divertor heat flux and improvement of core plasma performance (H₉₈, Z_{eff}) with all-metal PFCs
- Further explore relationship of divertor heat flux profiles to 'upstream' conditions near the LCFS (pedestal, T_i, coherent modes) and plasma confinement; link to modeling
- Explore physics of fuel retention and plasma-surface interactions via direct in-situ measurements
- Explore impurity effects and SOL transport physics associated with RF and off-normal events (e.g. new Mo source rate measurements, missing tile experiments, ionization source measurements)

- Wave propagation and absorption:
 - Characterize ICRF flow/current drive actuator.
 - Physics and simulation validation in both H and 3He minority and mode conversion regimes.
- Antenna compatibility --RF power in the SOL
 - Evaluation of rotated antenna and impurity production associated with RF antenna operation.
 - Assess SOL density profile and fluctuations impact on antenna loading.
 - Characterize ICRF sheaths, modification of SOL, and transport with RF power.

Research priorities: Lower Hybrid RF

- Validate working model of reduced current drive efficiency at high density by elaborating SOL-RF interactions, and determining CD efficiency in regimes with near-single-pass absorption.
- Investigate transport in flat/reversed shear plasmas with q(0) >1 and near-zero loop voltage, assessing the effect of shear on transport and turbulence in regimes with Internal Transport Barriers and significant bootstrap fraction.
- Upgrade available LH source power to 4 MW for the FY13 campaignby fabricating a second launcher and completing the fourth klystroncart.
- Develop, through experiment and simulation, steady-state scenarios achievable in AlcatorC-Mod with high (≥50%) bootstrap fraction.

- Study the effect of two toroidally-displaced gas jets on disruption mitigation, particularly focusing on the toroidal asymmetry of radiated power using the expanded set of AXUV detectors
- For disruption runaways, try to discriminate between limiter configuration and low elongation in terms of the prevalence of RE's in the current quench.
- Using our newly added fast particle diagnostics (FILD, FICXS), in addition to the CNPA array, continue our studies of the effects of Alfven modes on the confinement/loss of fast particles, and any degradation of heating efficiency.
- Test ITER CBN grounding scheme

- Optimization of seeding for ITER-like discharges (including development of feedback)
- Full discharge sequence demonstrations (half and full field)
- H-mode access and characteristics during current ramps
- Evaluation of transient control requirements
- LHCD assisted ramp-up experiments

Research priorities: Alternate Scenarios

- Optimizing performance and expanding operational space of I-modes, in both favorable and unfavorable configurations.
- Optimizing off-axis LHCD in hot plasmas (likely I-modes), comparing with models of LHCD and edge. (aim to get high single pass absorption).
- Assessing effects of LHCD in H-modes, both current profile modification (and its effects on confinement) and direct effects on particle and energy transport.
- Integrated modeling, incorporating LHCD w density limit model, and based on above experiments, to optimize advanced scenarios enabled by additional LH power, aiming at increased bootstrap and non-inductive current fraction.

- We are completing the current phase of FY11 operations in the next 2 weeks (to ~13.5 weeks)
- Maintenance period through August, including installation of new rotated ICRF antenna
 - FY11 target (on guidance budgets) is 15 weeks
- FY2012 guidance (Administration budget) is 17 research weeks

- Currently planning to run through winter 2011/2012

• Welcome collaboration across all experimental topical areas and diagnostics, as well as modeling support