2012 Joint Research Target

S. M. Kaye for the T&T group NSTX Research Forum 15-18 March 2011 Objective is to determine the source of transport in multiple channels, and the coupling among the channels

- Common approach being undertaken by C-Mod, DIII-D, NSTX
- Electron transport highlighted as one of the channels on which all will focus
 - ITG/TEM/neoclassical "accepted" as source of anomalous ion (and momentum) transport
 - Source of anomalous electron transport uncertain
- Particle and/or impurity transport is other channel to be highlighted
 - Include ion/momentum where possible, but JRT dedicated to momentum transport in 2008

NSTX contribution

- Excellent complement of turbulence diagnostics
 - Unique high-k for localized electron-scale turbulence
 - High S/N BES with excellent spatial coverage
 - FIRETIP
 - Polarimetry (towards end of run?) for B-twiddle
 - Excellent coupling to gyrokinetic simulations
- Sources of electron transport in NSTX
 - ETG (identified)
 - GAE (identified?)
 - Microtearing (to be identified) \rightarrow R(11-1)

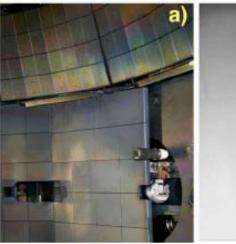
Approaches to JRT XP

- Key area is to determine ways to assess particle/impurity transport
 - Thermal transport comes along for the ride (?)
- Need to use perturbative approach for particles/impurities

Particle transport

- SGI to provide modulated edge particle source
- UCLA reflectometer to measure perturbation
- Scoping XP (Kubota)
 - Adjust SGI timing/pressure to avoid large core perturbation
 - Assess Fourier method to determine D/v
 - Are BES/CHERS compromised?
- Other perturbation techniques
- Steady-state analysis
 - DEGAS-II to determine particle source profiles (coordinate with Stotler)
 - Input source into TRANSP, D/v output

Impurity transport


- Can use SGI to seed with impurity gas at same time as D⁺ puff
 - Is modulation of impurity source useful?
 - Potential difficulty in separating X-ray emission from two species
 - May have to separate the two puffs in time (use steady-state particle transport analysis in that case)

- Thermal e/i transport
 - Can assess D^{eff} from steady-state analysis
 - Possible HHFW modulation for determining D/v
 - Issues with HHFW-NBI coupling
 - Magnitude and profile of HHFW heating uncertain
- Desired discharge conditions/requirements
 - MHD-free for ~150 ms (10-15 SGI modulations)
 - BES needs full 2 MW source (A for MSE)
 - Low edge density for reflectometry measurements (≤3.5e19 m⁻³)
- L-mode: thermal/particle/impurity
 - Employ SGI modulation if Kubota XP successful
 - S-S (DEGAS-II) if not (or in addition) + impurity puffs
 - Use MHD-free discharges developed in earlier EP XP (shot #s)?

- H-mode: thermal/impurity
 - S-S approach + impurity puffs
 - Vary ExB shear using n=3 to control ITG suppression
 - 2011 XP analysis has to be done to determine how successful
 - Will 3D effects compromise analysis?
 - If equipment arrives from DIII-D to allow reflectometer access to ≤
 7e19 m⁻³ before run ends, repeat H-mode work using SGI modulation method
 - Don't delay initial work, however

XP to optimize diagnostic method employing supersonic gas injector for transport studies

- Gas injection for radial transport studies
 - Density pulse deuteron transport (D_D, v_D)
 - Impurity density pulse propagation- impurity transport (D_{imp} , v_{imp})
 - Cold pulse propagation heat transport (χ_e)
- Pulsed or modulated to resolve diffusive and convective parts
- Supersonic gas injector on NSTX
 - Any gas (D₂, He, CD₄, Ne, Ar)
 - Midplane location (Z=16 cm)
 - τ_{pulse} ≥ 10 ms, up to 100 pulses / shot
 - Flow rate $5x10^{20} 1.4x10^{22} \text{ s}^{-1}$
 - Total plasma inventory $N_e \le 10^{21}$ / shot
 - Delta-function-like perturbation affects T_e , n_e , n_Z in pedestal and core
 - Edge / divertor D_{α} spectroscopy in combination with DEGAS 2 can be used for source rate estimates

- Diagnostic issues
 - Need to optimize SGI flow rate and pulse times for edge reflectometry n_e cutt-off and FireTip / MPTS n_e sensitivity
 - SGI pulses generally cause CHERS background signal contamination
 - Need to optimize impurity inj. rate for soft X-ray diagnostic sensitivity for cold pulse and impurity transport