
XP to optimize diagnostic method employing supersonic gas injector for transport studies

- Gas injection for radial transport studies
 - Density pulse deuteron transport (D_D, v_D)
 - Impurity density pulse propagation- impurity transport (*D_{imp}*, *v_{imp}*)
 - Cold pulse propagation heat transport (χ_e)
- Pulsed or modulated to resolve diffusive and convective parts
- Supersonic gas injector on NSTX
 - Any gas (D₂, He, CD₄, Ne, Ar)
 - Midplane location (Z=16 cm)
 - $\tau_{pulse} \ge 10$ ms, up to 100 pulses / shot
 - Flow rate 5x10²⁰ 1.4x10²² s⁻¹

Lawrence Livermore
National Laboratory

- Total plasma inventory $N_e \le 10^{21}$ / shot
- Delta-function-like perturbation affects T_e , n_e , n_Z in pedestal and core
- Edge / divertor D_α spectroscopy in combination with DEGAS 2 can be used for source rate estimates

- Diagnostic issues
 - Need to optimize SGI flow rate and pulse times for edge reflectometry n_e cutt-off and FireTip / MPTS n_e sensitivity
 - SGI pulses generally cause CHERS background signal contamination
 - Need to optimize impurity inj. rate for soft X-ray diagnostic sensitivity for cold pulse and impurity transport

V. A. SOUKHANOVSKII, NSTX FY2011 Research Forum, PPPL