

Supported by

Low I_p HHFW Heating & Current Drive Experiments

G. Taylor

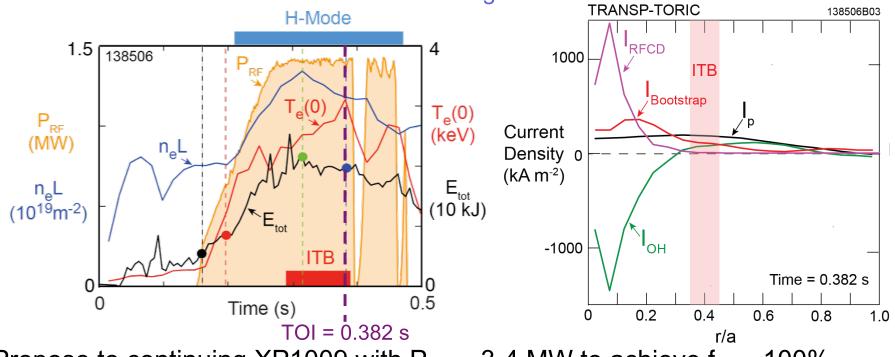
S. Gerhardt, J.C Hosea, C. Kessel, B.P. LeBlanc, D. Mueller, C.K. Phillips, S. Zweben

PPPL

R. Maingi, P.M. Ryan

ORNL

R. Raman


U. Washington

Three low I_p HHFW XPs in support of research milestone R(12-2)

WPI & SFSU TSG Meetings NSTX Research Forum March 17, 2011

Low I_p Fully Non-Inductive HHFW H-Mode: Description/Background

- I_p = 300 kA HHFW H-mode in 2010 achieved $f_{NI} \sim 65\%$ with P_{RF} = 1.4MW:
 - ITB formed during H-mode
 - > Positive feedback between ITB, high $T_e(0)$ and RF CD
 - Result obtained after 3-4 hours of running XP1009

- Propose to continuing XP1009 with $P_{RF} \sim 3-4$ MW to achieve $f_{NI} \sim 100\%$
 - Some work may needed to further improve plasma position control
 - Repeat at I_p = 250 kA

Low I_p Fully Non-Inductive HHFW H-Mode: Experimental Approach/Plan

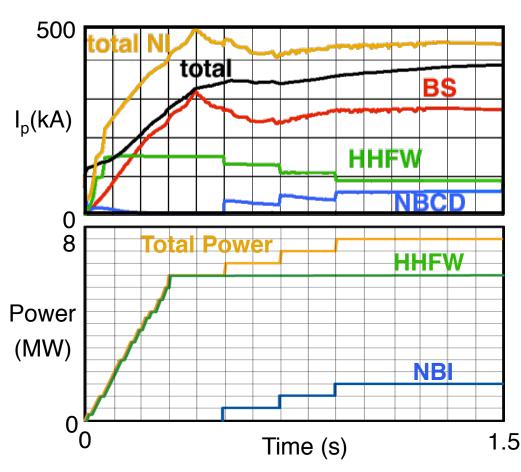
Plan:

>1. Setup I_p = 300 kA deuterium discharge similar to shot 138506 and couple k_{ϕ} = -8 m⁻¹ RF power from 150 to 450 ms:

Increase P_{RF} to 3-4 MW, while adjusting lithium evaporation rate, gas injection rate and outer gap to optimize RF coupling [10 shots]

>2. Reduce I_p to 250 kA and couple 3-4 MW of $k_{\phi} = -8 \text{ m}^{-1} \text{ RF}$ power:

 Adjust lithium evaporation rate, gas injection rate and outer gap to optimize RF coupling [10 shots]


≫3. Adjust RF pulse to start as soon as I_p reaches the flattop value. Then use open loop OH programming to provide no ohmic drive after I_preaches the ~ 200 kA (at a~ 25 ms)
[5-10 shots]

Machine Time: 1.5 days requested, 1 day minimum needed

Operational Requirements: P_{RF} = 3-4 MW with k_{ϕ} = -8 m⁻¹ current drive phasing & establish good plasma position control at I_p = 250-300 kA **Key Diagnostics:** MPTS, MSE-LIF

Analysis/Modeling: TORIC-TRANSP, GENRAY-ADJ

HHFW Ramp-up from $I_p = 250$ kA to $I_p = 400$ kA: Description/Background

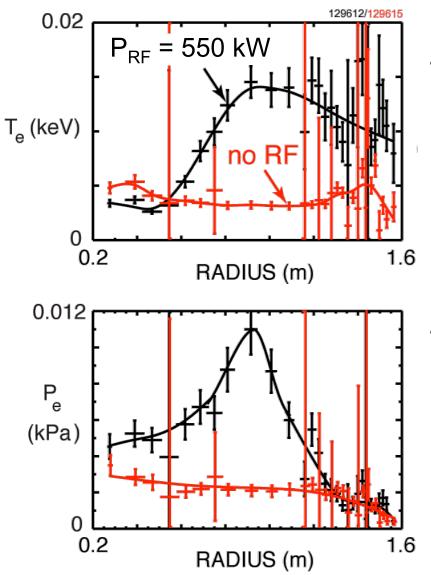
- TSC simulation predicts 5-6 MW of $k_{\phi} = -8 \text{ m}^{-1}$ HHFW can ramp I_p to $\ge 400 \text{ kA}$
- Propose applying $P_{RF} \ge 5 \text{ MW}$ to an $I_p = 250 \text{ kA}$ flat top inductive plasma and ramping I_p to 400 kA with bootstrap and RF CD
- Begin with I_p = 250 kA HHFW H-mode developed in XP1009
- If I_p reaches ≥ 400 kA add NBI source A

HHFW Ramp-up from $I_p = 250$ kA to $I_p = 400$ kA: Experimental Approach/Plan

Plan:

- >1. Setup an ohmically-heated $I_p = 250$ kA deuterium discharge. Add $k_{\phi} = -8$ m⁻¹ HHFW power, coupled from 150 to 450 ms:
 - Increase P_{RF} to 5 MW, adjusting lithium evaporation rate, gas injection rate and outer gap to optimize RF coupling [15 shots]

≻2. If I_p reaches at least 400 kA add 2MW of neutral beam power from source A and attempt to ramp I_p above 400 kA [10 shots]


Machine Time: 1 day requested, 1 day minimum needed

Operational Requirements: $P_{RF} = 5$ MW with $k_{\phi} = -8$ m⁻¹ current drive phasing & establish good plasma position control at $I_p = 250$ kA

Key Diagnostics: MPTS, MSE-LIF, MSE-CIF

Analysis/Modeling: TORIC-TRANSP, GENRAY-ADJ

HHFW Heating of CHI-Initiated Plasma: Description/Background

- Initial attempts to heat CHI startup plasmas with HHFW in 2008 showed good electron heating but could not maintain coupling:
 - ➢ P_{RF} = 550 kW coupled from 10 to 20 ms into I_p ~ 100 kA CHI plasma increased T_e(0) from 3 to 14 eV
- Propose revisiting HHFW-heated CHI plasmas, but probably not until the FY12 run:
 - Start HHFW pulse at ~ 100ms when I_p ~ 200 kA and move HHFW pulse progressively earlier

HHFW Heating of CHI-Initiated Plasma: Experimental Approach/Plan

Plan:

➤1 Develop a CHI plasma target with a well-controlled antenna-plasma gap [5-10 shots]

>2. Couple k_φ = -8 m⁻¹ HHFW power starting at ~ 100 ms and increase P_{RF} to 2-3 MW to drive plasma into H-mode and generate off-axis bootstrap current

- Large change in stored energy and current profile will probably require significant adjustments to the plasma position control [10-15 shots]
- >3. Move the start of the HHFW pulse progressively earlier

[10 shots]

Experiment should be run in FY12 given that the recent NSTX PAC recommended not giving coupling HHFW into CHI high priority in FY11
Machine Time: 1.5 days requested, 1 day minimum needed

Operational Requirements: P_{RF} = 2-3 MW with k_{ϕ} = -8 m⁻¹ current drive phasing & establish good CHI plasma reproducibility to $I_p \sim 200 \text{ kA}$

Key Diagnostics: MPTS, MSE-LIF

Analysis/Modeling: GENRAY-ADJ, TRANSP-TORIC