

FY2011-12 NSTX Wave-Particle Interaction Topical Science Group Planning

Gary Taylor

Group Leader

Mario Podesta

Deputy Group Leader

Nikolai Gorelenkov

Theory & Modeling

FY2011-12 NSTX Research Forum WPI TSG Meeting March 7, 2011

WPI TSG Research Priorities & ITPA Participation

Research Priorities:

- Utilize HHFW heating and current drive to assist non-inductive plasma current ramp-up and sustainment (R12-2) [with SFSU TSG]
- Characterize and optimize high-harmonic fast wave coupling in deuterium H-mode plasmas
- Assess predictive capability of mode-induced fast-ion transport (IR12-2)
- Extend TAE/EPM studies to H-mode plasma

ITPA Participation:

- TC-9 Scaling of intrinsic plasma rotation with no external momentum input
- TC-14 RF rotation drive
- IOS-5.2 Maintaining ICRH coupling in expected ITER regime
- EP-2 Fast-ion loss and redistribution from localized Alfven eigenmodes
- EP-4 Effect of dynamical friction (drag) at resonance on nonlinear Alfven eigenmode evolution
- EP-6 Fast ion losses and associated heat load from edge perturbations (ELMs and RMPs)

WPI TSG Run Time Request & Guidance

- 26 XP ideas requesting 26.75 run days, 17.3 minimum run days needed:
 - 10 XP's address NSTX research milestones
 - 21 XP's address ITPA tasks
 - 3 XP's are preparation for NSTX-U
- 3 XMPs; HHFW conditioning (4 days), tFIDA (1 day), TAE antenna (1 day)
- WPI TSG guidance:
 - FY11: 1st priority = 3 days + 2nd priority = 1 day
 - FY12: 1st priority = 4.5 days + 2nd priority = 1.5 days
- Meeting to plan HHFW start-up & I_P ramp-up at 12:00 noon in B-252 with SFSU TSG following WPI TSG meeting:
 - Requesting some run time for low I_p HHFW from SFSU TSG

WPI TSG Meeting Agenda

Time	Presenter	Title	WPI#	Requested Time	Minimum Time
9:00	G. Taylor	FY11-12 WPI TSG Resaerch Planning			
		Low Plasma Current Fully Non-Inductive HHFW H-Mode	1	1.5	1
		HHFW Ramp Up of Inductively Initiated Plasma from 250 to 400 kA	2	1	1
		HHFW Heating of CHI-initiated Plasma	3	1.5	1
		Assess HHFW+NBI H-Mode Operation with Pnbi ~ 6 MW	4	2	1
9:15	J. Hosea	Study HHFW Power Coupling Versus ELM Activity	5	2	1
		RF Heating at Divertor/SOL Regions	6	2	1
		Turbulence Characteristics for HHFW Saturated Stored Energy versus RF Power	7	1	0.5
9:30	M. Podesta	HHFW Absorption in NBI-Heated Plasmas	8	1	1
		Dependence of TAE Dynamics on Plasma Rotation	9	1	0.5
		Clamping of Edge Rotation by HHFW	10	0.5	0.5
9:45	E. Fredrickson	Documentation of GAE Avalanches	11	1	0.5
		Document of High Frequency CAE	12	0.5	0.5
		Documentation of Angelfish	13	1	0.5
		H-mode TAE Avalanches	14	1	1
		TAE Antenna Commissioning	15	1	0.5
10:05	M. Bell	HHFW Heating to Increase Non-Inductive Current Fraction in NBI H-modes	16	1.25	0.5
10:10	N. Crocker	Investigation TAE Radial Phase Variation	17	0.5	0.25
		Reflectometer Array			
10:20	D. Smith	Measure HHFW Wavefield	18	0.5	0.25
10:25	D. Green	Benchmark Predictive Capability of Advanced Quasi-linear RF Simulation Codes.	24	0	0
10:30	R. Maingi	Comparison of H-mode Pedestal Characteristics with RF and NBI	20	1	0.5
10:35	A. Loarte	Assessment of effects of 3-D fields on fast particle losses in ITER	27	2	1
10:40	A. Bortolon	Effect of Low Frequency MHD on Fast-Ion Confinement	21	1	1
		Effect of Induced 3D Fields on Fast-Ion Distribution	22	1.5	1
		t-FIDA Commissioning	28	1	0.5
		Effect of High Frequency Bursting Modes on NBI Current Drive Efficiency	26	0.5	0.5
11:00	A. Diallo	Plasma Current Scaling of the Pedestal Structure in RF Heated ELMy H-mode	25	0	0
11:05	S. Medley	High Energy Feature Study with NPA and NBI Scans	23	0.5	0.3
11:10	S. Kaye	Assessment of Fast Ion Loss by Microturbulence	19	1	1
11:15	G. Taylor & M. Podesta	Discussion, Consolidation & Prioritization of XPs (until about noon)			
		Run Days		26.75	17.3
		Run Time Guidance Days		10	10
		XMP Days (excluding HHFW)		2	
		XMP Days (including HHFW)		6	

Considerations for XP Prioritization (in approximate priority order)

- Viability of proposal given available NSTX capabilities
- Joint Research Milestones
- NSTX Research Milestones:
 - Annual milestones + other ST high priority research
 - NSTX-Upgrade design needs
- ITPA, especially where NSTX is lead/prominent experiment
- Experiments leading to high-profile publications/presentations:
 - PRL, Science, Nature / Invited talks: IAEA, APS, EPS
- Career development: PhD thesis, post-doctoral research
- Any good idea generated during run