MAST Upgrade: Status, plans and complementarity with NSTX-U

Andrew Kirk

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

- 1. Introduction
- 2. Timeline and project progress
- 3. 1st physics campaign
- 4. NSTX-U Complementarity

MAST Upgrade ("core scope")

Increased TF Improved confinement

New Solenoid Greater I_p, pulse duration

19 New PF Coils Improved shaping

Super-X Divertor Improved power handling

Off-Axis NBI Improved profile control

Increased TF Improved confinement

New Solenoid Greater I_p, pulse duration

19 New PF Coils Improved shaping

Super-X Divertor Improved power handling

Off-Axis NBI Improved profile control

Cryoplant Divertor particle control

Double NBI Box

Increased auxiliary heating

MAST Upgrade after Stage 1

Increased TF Improved confinement

New Solenoid Greater I_p, pulse duration

19 New PF Coils Improved shaping

Super-X Divertor Improved power handling

Off-Axis NBI Improved profile control

Cryoplant *Divertor particle control*

Double NBI Box

Increased auxiliary heating

MAST Upgrade after Stage 2

EBW

Pellet injector

4th NBI source

MAST Upgrade has 3 primary objectives, namely to contribute to:

1) Developing novel exhaust concepts

2) Knowledge base for ITER (e.g. understanding and controlling ELMs with 3D fields)

3) Feasibility of spherical tokamak as fusion Component Test Facility

-'

- MAST-Upgrade will have expanded operational space
 - Maximum plasma current increased from 1.3MA to 2.0MA
 - Lower main chamber neutral pressure
 - Lower n_e, higher T_e edge pedestal
 - Higher elongation, triangularity
- Very flexible magnetic geometry
 - "Conventional", Super-X and snowflake divertor configurations possible

Flexible poloidal field coil set allows for a wide variety of magnetic geometries

Super-X

- Divertor physics programme will focus on studying the Super-X divertor configuration*
 - Larger $R_{div} \rightarrow$ larger wetted area

- Larger SOL volume

- Lower poloidal field in divertor \rightarrow larger L_{||}

*Valanju et al., Phys. Plasma 16, 056110 (2009)

MAST Upgrade Overview:

Parameter / System	Upgrade
Toroidal Field	Increased from 0.5 to 0.8T (at $R = 0.8m$)
Plasma Current	Increased from 1MA to 2MA
Pulse Length	Increased from 0.5 to 5s
In-vessel Coils	Increased from 10 to 20
Ex-vessel PF Coils	Increased from 1 to 4
NBI injection	2 on-axis beams reconfigured to 1 on-axis, 1 off-axis
Divertor	Fully reconfigured for advanced scenario operation

=> Result, 90% of the Load Assembly is new (only vacuum vessel and a few coils re-used)

1. Introduction

- 2. Timeline and project progress
- 3. 1st physics campaign
- 4. NSTX-U Complementarity

Progress Summary

MAST-U Load Assembly - Modular Construction

Build Progress

Lower divertor cassette - 90% complete

Centre tube module - 40% complete

Build Progress

Lower end plate - 40% complete

Solenoid - complete

Build Progress

Outer cylinder – PF coil and embedded diagnostics - 75% complete

NBI Progress

NBI bend magnets – 80% complete

NBI ion dumps - 80% complete

Power supplies

Toroidal field power supplies – Installed and ready for local commissioning

Poloidal field and divertor power supplies

- Installation 75% complete

New control room

Construction underway

- 1. Introduction
- 2. Timeline and project progress
- 3. 1st physics campaign
- 4. NSTX-U Complementarity

• Water cooled centre column reduces I²t

P1: I²t = 1500 kA²s (3000 kA²s Galden)

TF: 40 000 kA²s (50 000kA²s with Galden) -> pulse duration ~ 1.8s (based on MAST scenarios) However likely that it will be core MHD (q<1) that will limit shot duration

- Coil current limits to avoid lifetime limiting shots during 1st campaign P1 current limit +/- 45 kA (55kA max) TF current = 100 kA (135 kA max)
- NBI power supply and machine protection limits NBI pulse length 2s NBI power/PINI 2 MW
- No Cryoplant Non stationary density

Diagnostics

Plan to have similar set of diagnostics as on MAST available at Day 1

- MAST-U will retain diagnostic capabilities
 - 130 point, ~1cm resolution
 Thomson scattering
 - Extensive beam spectroscopy
 - Charge-exchange
 recombination spectroscopy
 - Motional Stark Effect
 - Fast Ion D_{α}
 - Wide-angle high speed imaging
- Divertor diagnostics will be extended and enhanced

- Extensive Langmuir probe coverage
 - Strike points will be monitored in a wide range of magnetic configurations
- Thomson scattering will be used to measure n_e, T_e in the divertor chamber
 - Measurements at 16 locations along laser path
 - Monitor parallel pressure balance \rightarrow detachment physics
 - Benchmarking Langmuir probes and spectroscopy
- Radiated power in main chamber and divertor will be monitored using gold foil bolometer arrays
 - 32 channels in main chamber
 - 32 channels in divertor

New Divertor Diagnostics

Divertor reciprocating probe will be used to measure fluctuations in the Super-X divertor chamber

Divertor strike points will be monitored by IR and filtered visible cameras

Experimental proposals in the following two areas will be given priority for the first physics campaign

Scenario development:

MAST-U is effectively a new machine and so we will need to establish new scenarios that can be used by other areas.

Need to understand

- 1) intrinsic error fields in MAST-U
- 2) H-mode access in conventional and Super-X divertor configuration
- 3) on vs off-axis neutral beam heating and current drive

Exhaust:

Experiments that exploit the new features in MAST-U namely a closed conventional divertor allowing detachment studies and experiments comparing a super-X and conventional divertor configuration.

In addition to involvement in these areas, in future campaigns there are a wide range of other topics that we would welcome collaborators to lead

- 1. Introduction
- 2. Timeline and project progress
- 3. 1st physics campaign
- 4. NSTX-U complementarity

In 2015 involvement will have to be limited due to budget restrictions, however, we will bid for EuroFusion funds for further experiments in 2016

For 2015 we would like to propose experiments on

- 1) Joint pedestal experiment on the effect of seeding on pedestal structure (Beurskens, Giroud, Saarelma and Leyland)
- 2) Scenario development restart studies

For 2016 we would like to discuss involvement in fast particle studies

Due to a restructuring of priorities at CCFE we are seeking an ever increasing contribution from external collaborators, many of which would be greatly improved with comparisons on NSTX-U, some ideas are:

Core turbulence: Turbulence studies, exploiting the higher field and the upgraded BES system and a possible DBS system.

Fast particle physics: effect of on and off-axis beams on TAE drive, fishbones etc using improved diagnostics including a Fast ion loss detector

Rotation studies: NTV studies using in vessel RMP coil set

- MAST-U build now well underway
 - some delays due to technical and budget issues

Summary

- first plasmas due mid 2017
- The machine will offer many interesting divertor configurations
 super-X, conventional, snowflake

• Many similarities with NSTX-U, which we think should be exploited and we welcome collaborators to lead some of the research activities

