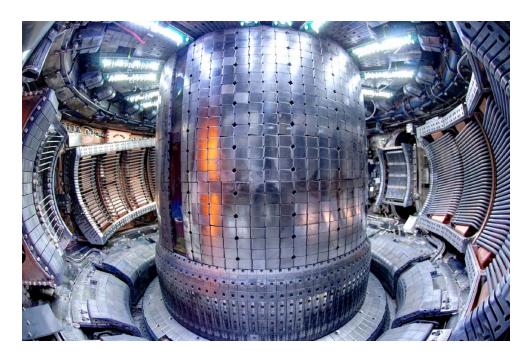

Alcator C-Mod – Current status and plans

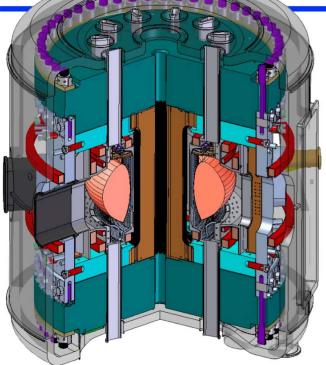

Collaboration ideas for NSTX-U

Presented by B. LaBombard for the Alcator Team

NSTX-U Research Forum, Feb. 24, 2015

Alcator C-Mod will operate for 12 run weeks in FY15

- April: plasma operations
- May Sept: physics expts.
- Currently up-to-air, refurbishing in-vessel components



Upgrades: Accelerator-based In-situ Materials Surveillance (AIMS); Shoelace antenna (x4 power); Lower hybrid wave k_{//} spectrum diagnostic; MSE: multi-spectral line polarization system using imaging polychromators; ski-ramped divertor cassettes (ITER-like)

Some Highlights for FY15 Campaign

- 2015 JRT: impact of off-axis LH current drive on stability and confinement
- Exploit upgraded AIMS
- High-power dissipative divertor experiments with feedback control
- I-mode studies at 8 T

- ICRF Plasma-edge interactions with field-aligned antenna: impurity control and antenna characterization
- Exploit "shoelace" antenna for study and control of active short-wavelength electromagnetic modes in pedestal
- Look for signatures of ETG with new PCI detector and compare with multi-scale gyrokinetic simulations
- ♦ Early run time for 2016 JRT: Disruptions

- Guidance: operate C-Mod 5 run weeks FY16, shut down FY17
- Transition to collaborative activities
 - DIII-D and NSTX-U
 - International
- MIT Team is presently assembling a 5-year Cooperative Agreement proposal to fund domestic and international collaborations

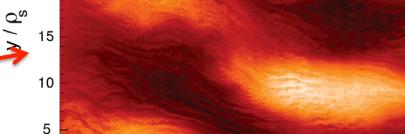
MIT Team sees NSTX-U as having excellent opportunities for collaborative work in a number of areas.

Timing: FY16-FY17: Ramp down of C-Mod research FY17+: Ramp-up of collaborations

Alcator C-Mod – Current status and plans; Collaboration ideas for NSTX-U

Outline

C-Mod Research Highlights and Ideas for Collaboration with NSTX-U


- Core Transport
- Pedestal
- RF Heating and Current Drive
- □ MHD Disruptions
- Boundary Plasma Physics and PMI (5 topics)

Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015

C-Mod Research Highlights: Core Plasma Transport

- Multi-channel transport studies; focus on impurity, particle and momentum transport
- Beta scaling of transport in ITER-relevant plasmas
- Multi-scale transport model validation; effects of high-k (ETG) on electron heat transport in L-mode plasmas; configure PCI for high-k /int-k measurements to test new predictions
- Most planned experiments supported by pre-experiment nonlinear gyrokinetic code *predictions*, as well as extensive post-experiment gyrokinetic analysis/ validation efforts

Contacts: Anne White, Martin Greenwald

Midplane Potential Fluctuations

30

25

20

Ω

-20

0.027

0.018

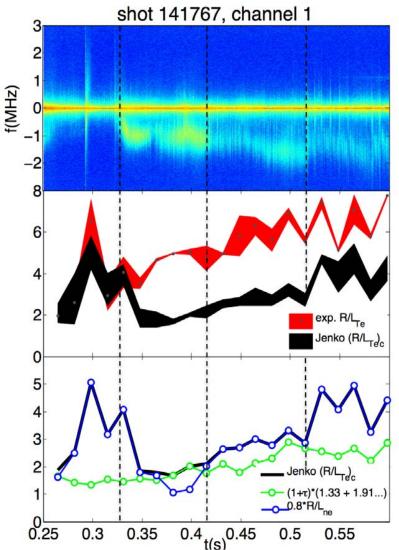
0.009

0.0

-0.009

-0.018 -0.027 -10 0 10 20 -0.027 -10 χ / ρ N. Howard *et al*, PoP 2014

Nonlinear GRYO simulation of C-Mod L-mode plasma resolving $k_{\theta} \rho_{s}$ up to 48 ($k_{\theta} \rho_{e}$ < 0.8)

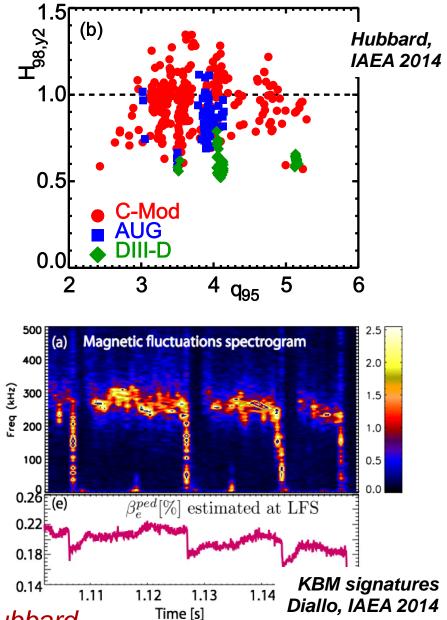

Ion and electron heat flux at r/a=0.6 matches experiment only when electron scale turbulence is included.

NSTX-U Collaboration Ideas: Electron Heat Transport

Build on recent work -- Evidence for density gradient stabilization of high-k turbulence in NSTX

- J. Ruiz Ruiz and A. White, collaboration with Y. Ren, W. Guttenfelder and S. Kaye
- Evidence for density gradient stabilization of high-k turbulence in NSTX (Ruiz Ruiz, APS 2014). *Phys. Plasma* manuscript in preparation (Ruiz Ruiz)
- Work has focused on high-k turbulence data analysis and linear GS2 simulations only
- Future plans for TRANSP and nonlinear GYRO simulations, new experiments with upgraded high-k system (2016) to examine similar plasmas in NSTX-U.

Timescale: FY15 + MIT/NSTX-U collab. plan


C-Mod FY15/16 Research Highlights: Pedestal Physics

Access and sustainment of desirable high-confinement regimes

- Expanding studies of I-mode to 8T, exploring divertor power handling
- Influence of divertor geometry on Hmode, I-mode power threshold
- Modeling activities for enhanced understanding of transport + stability determining pedestal structure
 - EPED predictions for super H-mode tested at high B_T, n
 - Gyrokinetic simulations of measured kinetic ballooning modes between ELMs
 - Turbulence modeling of I-mode pedestals with gyrokinetic codes and BOUT++

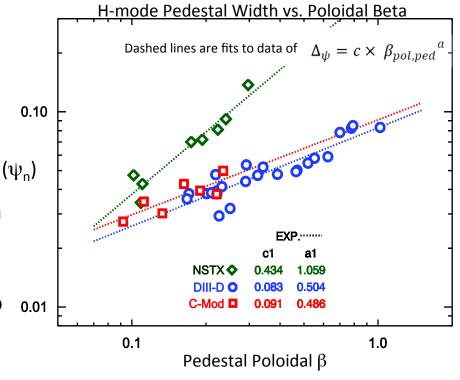
Range of I-mode performance, safety factor

Contacts: Jerry Hughes, John Walk, Amanda Hubbard

Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015

Pedestal: Ideas for Collaboration on NSTX-U

Development of stationary highconfinement regimes

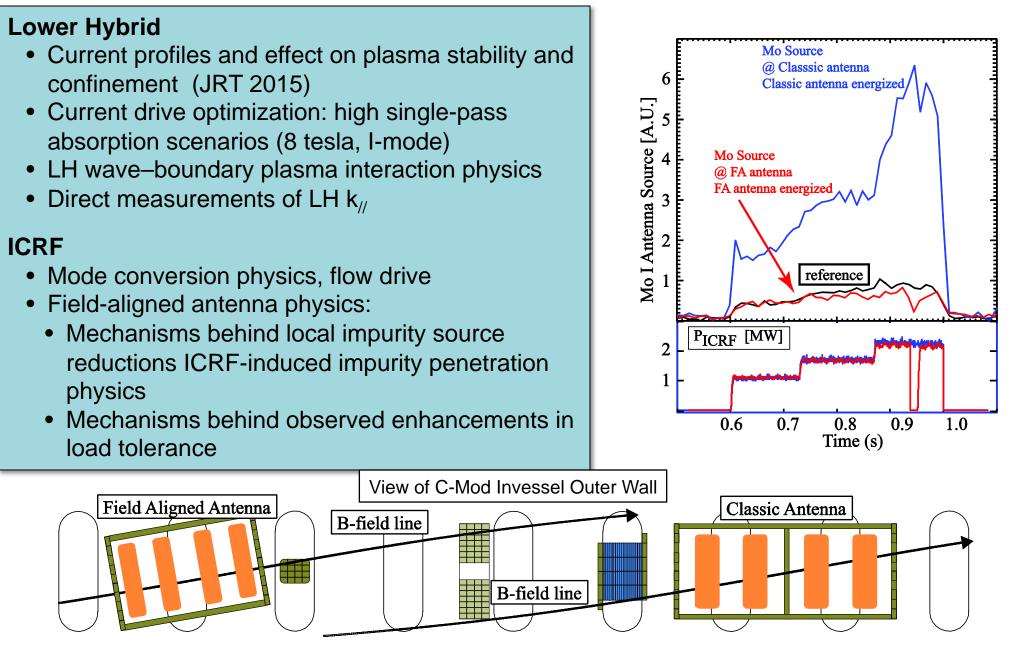

- I-mode experiments (FY15/16)
 (proposal submitted to Research Forum)
- Aspect ratio dependence of pedestal structure (i.e. height + width)
 - Multi-machine study can utilize high resolution pedestal data from C-Mod, DIII-D, NSTX-U, state-of-the-art modeling tools
 - Work toward predictive capability for next-step devices

Transients and pedestal dynamics

- Utilize new multi-pulse Thomson system (FY16)
- Study implications for fast flux perturbations (e.g. sawtooth heat pulses) on transitions between confinement regimes, pedestal stability

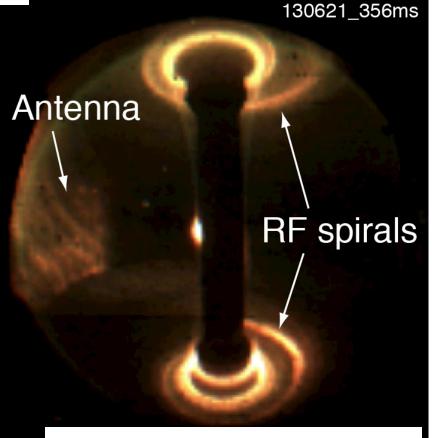
Timescale: FY15 + MIT/NSTX-U collab. plan

Contacts: Jerry Hughes, John Walk, Amanda Hubbard



Hughes, APS 2012

C-Mod Research Highlights: LH Current Drive; RF Wave Physics; ICRF Actuator Development



Contacts: Steve Wukitch, Greg Wallace

Topic: Field-aligned antenna physics

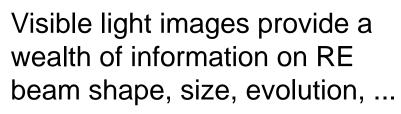
- Assess and develop technological and physics solutions to RF antenna–plasma interactions
 - Develop warm plasma dielectric tensor solver to identify waves that can be excited by antenna
 - Analyze antenna geometries that can minimize parasitic absorption
 - Can field aligned antenna ameliorate edge RF absorption?
- Develop tools to assess HHFW core absorption, particularly in fusion reactor grade scenarios
 - High harmonic fast waves interaction with beam ions could be used as proxy for fusion alphas

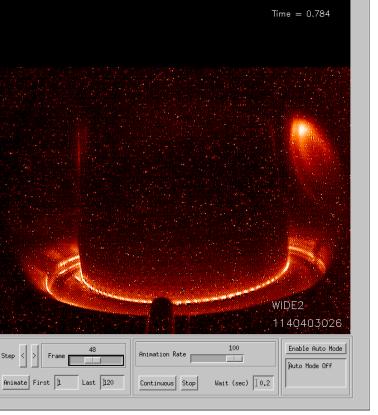
R.J. Perkins et al, RFPP 2013

Topic: ECH/EBW for NSTX-U – MIT has a strong interest in this area Timescale: FY15 + MIT/NSTX-U collab. plan

Contacts: Steve Wukitch, Greg Wallace

Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015


HELP RECOME


C-Mod Research Highlights: Disruptions

• FY2016 JRT: "Disruption avoidance, detection, and mitigation"

- Experiments planed for C-Mod in FY2015-16
 - Mitigation and asymmetry of MHD-"sick" plasmas (large 2/1 and/or locked) with two MGI valves
 - Impurity injection as a tool to mitigate runaway electrons in flattop of very-low-density discharges
- Video imaging and new spectrometers will record forward-peaked synchrotron emission spectrum (300-800 nm) from highly-relativistic runaways
 - energy, pitch angle, spatial structure, number density, and temporal evolution
 - provide data to outside groups for RE theory and modeling
- Development of universal disruption warning algorithms based on S. Gerhardt's physics-based method, using data from C-Mod, DIII-D, and NSTX-U

Contact: Robert Granetz

_ 🗆 ×

Disruption Physics: Ideas for Collaboration on NSTX-U

- JRT2016: NSTX-U disruptions to be included in the development of universal disruption warning algorithm(s)
 - Idea: Set up an SQL database of disruptions for NSTX-U. We have a disruption database on C-Mod, have recently created one on EAST, and are currently setting one up on DIII-D. If this has not been set up yet for NSTX-U, we propose to do it. The database would be populated automatically after each disruptive shot.

• Participate in executing and/or analyzing disruption experiments

- basic characterization: dl/dt, P_{rad} fraction, halo currents
- mitigation: P_{rad} fraction enhancement, halo current reduction, toroidal asymmetries [NOTE: we could transfer the two fast MGI valves on C-Mod to NSTX-U]
- Development of high-temperature halo/eddy current sensors?

Timescale: FY15 + MIT/NSTX-U collab. plan

Contact: Robert Granetz

C-Mod Boundary Research in FY15/FY16

Boundary plasma turbulence & transport

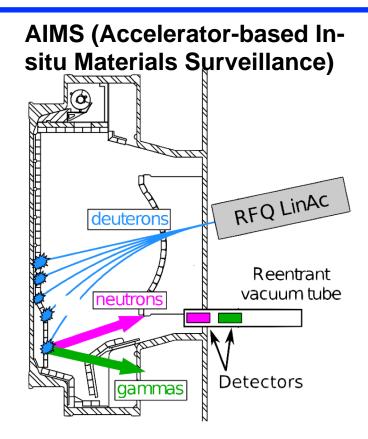
External probing/excitation of boundary modes Improved confinement via LHRF boundary modification Physics of the heat flux channel width SOL transport and turbulence in inner-wall limited discharges Effect of magnetic shear on turbulence

n, Te, Φ fluctuation statistics and blob propagation models

Divertor Physics

Optimized plasma performance; seeding via feedback control Detachment in I-mode Magnetic topology: vertical target, snowflake, X-divertor X-point turbulence

Density Limit Physics

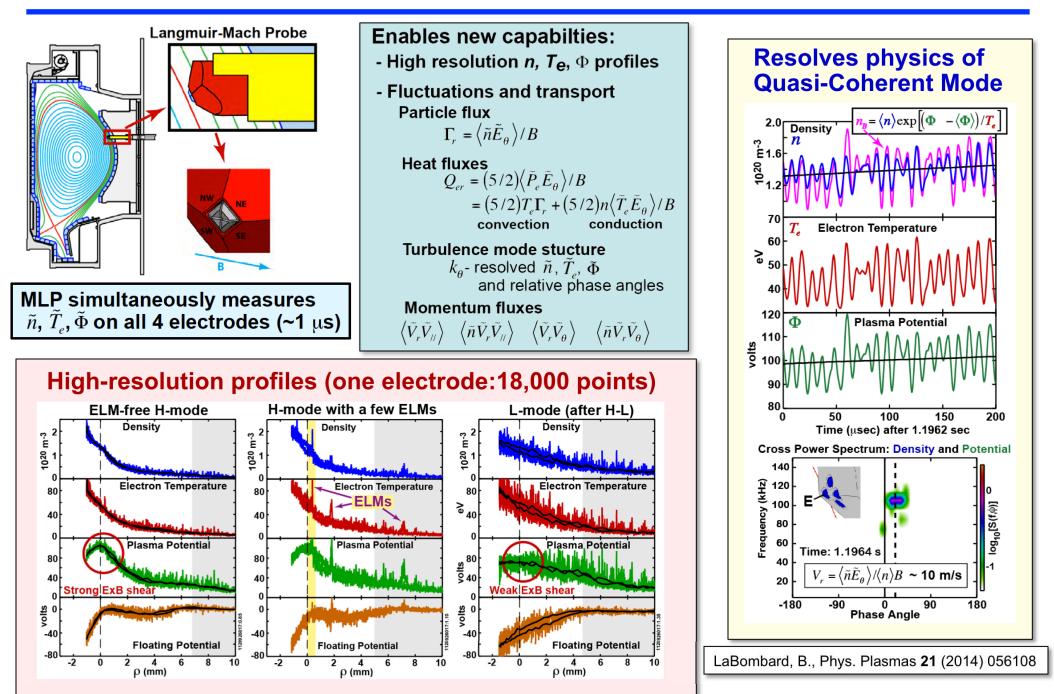

Experiments in support of simulation validation Heat flux widths, edge gradients and EM turbulence Impact of LHRF on MARFE onset and density limit

RF-Boundary Interactions

Physics of impurity penetration during ICRF-heated L-modes LHCD driven fast electrons in the boundary plasma High-field side / low-field side impurity screening asymmetries

Plasma-Material Interaction Physics (AIMS)

Boron erosion, deposition and migration ICRF-induced boron erosion studies Between shot and daily tracking of wall condition evolution



New Tools

AIMS X-point turbulence imaging (GPI) Multispectral divertor imaging Advanced scanning probe Upgraded Shoelace Antenna

Contacts: Brian LaBombard, Jim Terry

C-Mod Highlight: Unfolding boundary physics with a scanning Mirror Langmuir Probe

Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015

Mod

Collaboration Idea: Implement an advanced scanning probe system on NSTX-U

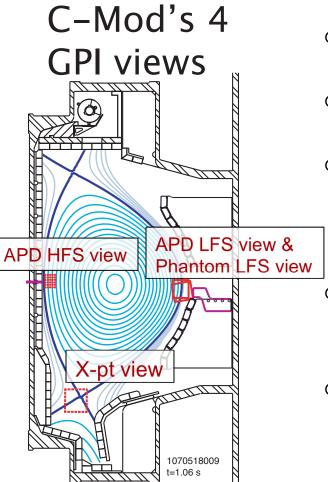
> MIT is developing a next generation, scanning probe system


- Mirror Langmuir Probe bias for real-time I_{sat} , V_f , T_e measurements
 - Linear Servomotor drive -- Sets plunge depth based on local plasma conditions
- > High heat flux probe heads would access NSTX-U pedestal

Plan

- Prototype in C-Mod (FY15-FY16)
- Build, install on NSTX-U (FY16-FY17)
- Experiments FY17+

Advanced probe heads:

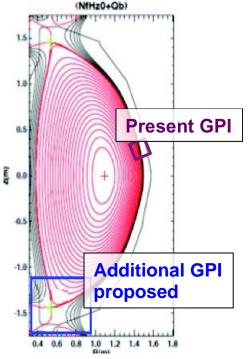

Contacts: Dan Brunner, Brian LaBombard

C-Mod Highlight: Edge/divertor turbulence research enabled by GPI

- PPPL and MIT have had a long-standing fruitful collaboration on GPI
- Use C-Mod's 4 GPI systems for research into:

- Turbulence at the X-pt "churning" mode? (X-pt view)
- RF-Induced convection (both LFS midplane views)
- Edge coherent modes (Quasi-coherent mode, Weakly coherent mode, KBM-like mode, GAMs) (APD LFS midplane view)
- Effects of high-shear region, e.g. near-X-pt region, on blobs (X-pt view and LFS midplane views)
- Spatial dynamics of detachment (X-pt view)

Collaboration Idea: Advanced GPI on NSTX-U



Enhance NSTX-U GPI systems (in stages)

(1) Implement APD-based GPI on existing view of the existing gas-puff manifold

(2) Transfer C-Mod HFS APD-based system to NSTX-U, viewing a plasma-fueling gas puffer on center stack, enabling new HFS turbulence measurements

(3) Add new view of the X-pt region, enabling X-pt turbulence measurements & fast 3D diagnosis of edge turbulence - employ two existing quartz coherent fiber bundles

Contact: Jim Terry

Physics:

- Edge/SOL turbulence and relationship to SOL heat-flux width;
- L-H transition trigger (coupling between turbulence and sheared flows);
- Pedestal modes (EHO, GAMs, ELMs);
- Effect of 3D fields (RMP) on edge and SOL turbulence;
- SOL convection induced by HHFW RF heating;
- Edge, SOL, and private flux region turbulence in different divertor configurations;
- X-point turbulence dynamics in standard and snowflake configurations --"churning" modes;
- 3-D turbulence structure and parallel dynamics -- midplane to divertor

Timescale: FY16+ as part of MIT/NSTX-U collab. plan

C-Mod Highlight: Development of multi-spectral imaging for atomic line ratios in the divertor

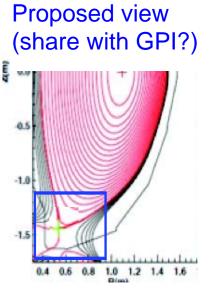
PPPL-Alcator collaboration has developed high-throughput imaging polychromators for multi-spectral MSE

- o 20-30x etendue of typical Thomson scattering polychromators optically fast
- New filter technologies and design- spectral resolution of 10-4, full visible range
- Little degradation of each additional image —many filtered images w/ same view

10 polychromator system for Multi-spectral MSE

FY15-16: Proof-of-principle and workflow development on C-Mod

- $_{\rm O}~$ Helium line ratios and Stark broadening for $\rm n_{e},~T_{e}$ images
- Balmer line ratios for recombination images
- o Multi-wavelength GPI (Cziegler)
- \circ Mo, N, Ne lines for impurity influx and seeding


Existing prototype hardware used for imaging the x-point through coherent fibers Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015

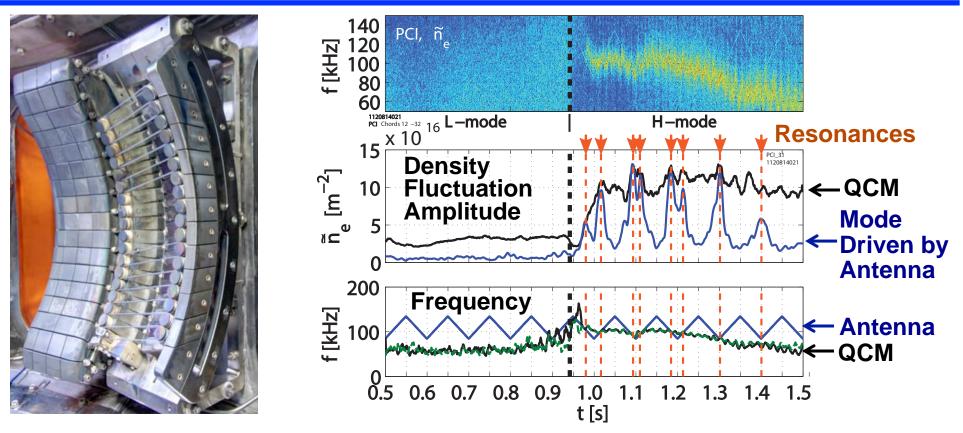
Collaboration Idea: Multi-spectral imaging of the NSTX-U divertor for T_e , n_e , recombination and impurities

Take lessons learned and workflow from C-Mod and apply technique to image divertor region on NSTX

- Refined polychromator layout with 10-16 ports -populate as funding allows
- o Invert images or compare directly to synthetic diagnostics in simulations

Plan

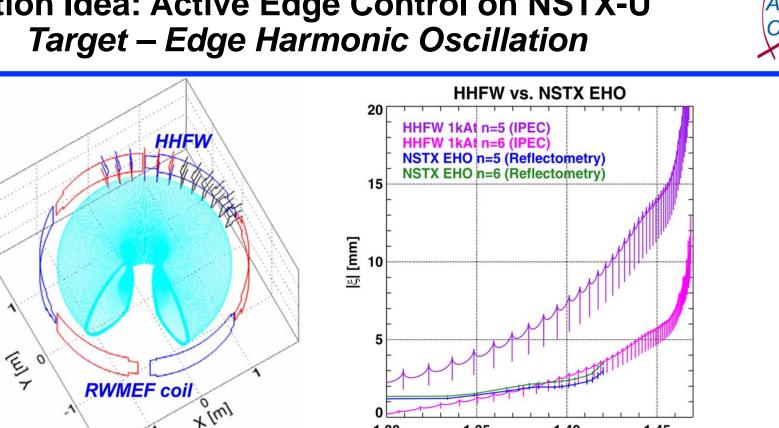
- Prototype in C-Mod (FY15-FY16)
- Install view and upgraded system on NSTX-U (FY16-FY17)
- Experiments FY17+


Contacts: Bob Mumgaard, Jim Terry

Line	Wavelength [nm]	Purpose
D Balmer	410, 434, 486, 656	Volume
High n D	370-385	recombination
CI	494, 538, 833	Impurity
CII	392, 427, 514, 658, 678	transport,
C III	407, 465, 570	erosion from ELMS
He I	389, 447, 588, 668, 707, 728	n _e , T _e images
He II	320, 468, 541	Higher temps
Continuum	-	Background subtraction
NI	746	
N II	400, 463, 501, 568, 648, 661	Seeding
Ne I	640, 693, 703, 717, 724, 743	experiments
Ne II	357, 366, 371, 373	
Dβ wide	486	Stark
Dβ narrow	486	broadening for n _e
Lil	323, 413, 460, 610, 670	Monitoring LLD
Li II	320, 325, 468, 478, 549	and Li
Li III	516	propagation
WI	361, 386, 401, 407, 429	High Z upgrade
Mol	380, 386, 390, 551, 553, 557	erosion

1-window: many lines, same view

C-Mod Highlight: Exploring Active Edge Control with the Shoelace Antenna



- Active Edge Control (AEC): perturb coherent edge fluctuations by external means to exhaust impurities, sustain high-performance confinement mode
- Shoelace Antenna drives resonance at f, k_{\perp} of Quasi-Coherent Mode (QCM), which enables EDA H-mode; also matches WCM
- FY2015 experiments to make measurements of antenna-driven transport, utilizing Mirror Langmuir Probe and ≥4× power upgrade

T. Golfinopoulos, Phys. Plasmas **21** (2014) 056111; T. Golfinopoulos, Rev. Sci. Instrum. **85** (2014) 043510 Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015

Collaboration Idea: Active Edge Control on NSTX-U Target – Edge Harmonic Oscillation

1.30

- J.K. Park et al. have proposal to use HHFW straps to excite Edge Harmonic Oscillation (EHO) [Park et al., Nucl. Fus. 2014] of Quiescent H-mode
- Plan:
 - FY15+: Investigate low-f (1-10 kHz) amp. modulation, with HHFW antenna RF as carrier, to excite EHO (idea submitted to Research Forum)
 - FY16+: Work with NSTX-U on follow-on experiments -- power sys., antenna, and experimental design; supporting diagnostics; interpretation of data

Contact: Ted Golfinopoulos

3ª

Status of Alcator C-Mod and collaboration ideas for NSTX-U – NSTX-U Research Forum, Feb. 24, 2015

1.35

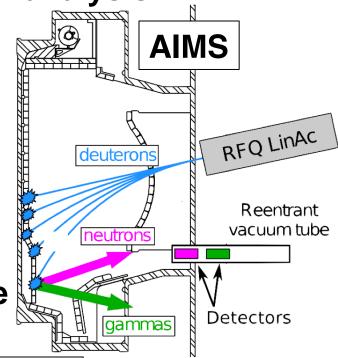
1.40

R [m]

1.45

C-Mod Highlight: Developing Advanced Tools for Plasma-Material Interaction Science

AIMS (Accelerator-based In-situ Materials Surveillance) is being enhanced for intershot *in-situ* PFC ion beam analysis


- Upgrades to detectors and RFQ LinAc will enable between-shot analysis, including B erosion/deposition and D retention
- AIMS NRE is ideal for carbon/lithium NSTX-U

An AIMS system at NSTX-U will be explored as part of MIT/NSTX-U collaboration plan, FY16+

"Traditional" ion-beam analysis (IBA) tools at MIT (CLASS) are also used to interrogate C-Mod PMI in the usual *ex-situ* mode

Contacts: Zach Hartwig, Graham Wright Status of Alcator C-Mod and collaboration

Collaboration Idea: Leverage Materials Analysis Particle Probe capabilities to expose custom targets for ex-situ IBA

- Alcator C-Mod
- Ion Beam Analysis (IBA) techniques reveal material distributions below the surface complimenting the surface-focused diagnostics of MAPP. (Idea submitted to NSTX-U Research Forum, Materials & PFC Group)
- Two main thrusts:
 - 1. Traditional IBA (RBS, NRA, ERD) to measure Li-layer thickness, oxide layer thickness, D retention and Li-C intermixing in targets exposed in NSTX-U.
 - 2. Implement low-Z *implanted* depth markers to track net deposition/ erosion of targets.

IBA will simulate AIMS capabilities and refine AIMS detection techniques for the NSTX-U environment.

Timescale: FY15, and part of MIT/NSTX-U collab. plan

Contacts: Zach Hartwig, Graham Wright

The Alcator Team is looking forward to fruitful collaborative work with PPPL scientists on NSTX-U in a number of areas.

- C-Mod operations -- FY15: 15 weeks, FY16: 5 weeks, FY17: 0
- Presently assembling 5-year Cooperative Agreement proposal to fund collaborative research

FY16-FY17: Ramp down of C-Mod research FY17+: Ramp-up of collaborations