

Introduction to the Integrated Scenarios SG!

Coll of Wm & Mary Columbia U CompX

General Atomics

FIU INL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Lehigh U

Nova Photonics

ORNL PPPL

Princeton U

Purdue U

SNL

Think Tank. Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Stefan Gerhardt (PPPL): SG Leader Roger Raman (U. of Washington): Deputy SG Leader

NSTX-U 2015 Research Forum B-318 2/24/2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst **TRINITI** Chonbuk Natl U NFRI KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

These are the TSGs...and When They Will Meet!

Advanced Scenarios and Control

- TSG Leader: Devon Battaglia (PPPL)
- Deputy TSG Leader: Stefan Gerhardt (PPPL)
- Theory/Modeling Rep.: Francesca Poli (PPPL)
- University Rep.: Egemen Kolemen (Princeton University)
- MEETING: B331, 1:30 P.M. Tuesday (Director's Conference Room)

RF Heating and Current Drive

- TSG Leader: Rory Perkins (PPPL)
- Deputy TSG Leader: Joel Hosea (PPPL)
- Theory/Modeling Rep.: Nicola Bertelli (PPPL)
- University Rep.: Paul Bonoli (MIT)
- MEETING: B252, 9:00 A.M., Wednesday

Solenoid Free Start-up and Ramp-up

- TSG Leader: Dennis Mueller (PPPL)
- Deputy TSG Leader: Roger Raman (U. of Washington)
- University Rep.: Fatima Ebrahimi (PU)
- MEETING: B331, 1:30 P.M. Wednesday (Director's Conference Room)

Advanced Scenarios and Control Goals

- Identify mechanisms limiting vertical stability and what additional capabilities are required for achieving vertical stability at high κ.
- Evaluate access and scalability of three scenarios:
 - High non-inductive fraction
 - High(est) current and field
 - Long(est) pulse
- Advance capabilities of tokamak/ST control and disruption avoidance.
- Achieve scenarios that optimize the verification and validation of transport and confinement modeling and predictive tools.
- Achieve steady-state density and radiation at a fixed fraction (0.5-0.8) of n_{GR}.

Advanced Scenarios and Control Breakout Session Agenda

	Speaking Time	Author	Title	Time Requested	Time Allocated
1	1:40	Snipes	Actuator Sharing and Integrated Control Demonstration	4	0
2	1.40		Characterizing Type I ELMy H-modes in He plasmas and demonstration of ELM Contr	2	0
3	1:50	Ferron	Compare benefits of off-axis NBI	3	0
4		Gerhardt	Maximize the non inductive fraction in H-mode	2	0
5	2:00		Tuning of automated rampdown software	1	0
6	2.00		Reversed Shear Plasmas with Relaxed Profiles	1	0
7			Combining High Non-Inductive Fraction with Advanced Divertors	1	0
8	2:15	Poli	Rampdown Studies	1	0
9			NB Sustainment	1	0
10	2:25	Levinton	Measurement of NBCD	1	0
11		Boyer	Beam power and BetaN Control	0.5	0
12	2:30		Combined betaN and I_i control	1	0
13	2:30		Current profile controllability scoping study	1	0
14			Optimization of the Vertical Control Algorithm	1.5	0
15	2:45	Schuster	Model Based Optimal Feedforward Current Profile Control	1	0
16		Kolemen	X-Point Control	1	0
17			3D Coil BetaN Control	1	0
19	2:50		Adaptive ELM Control	1	0
19	2.50		Radiation Control	1	0
20			Vertical Growth Rate and max. controllable displacement	1	0
21			Controlled Snowflake Studies	1	0
22	3:10	Soukhanovskii	ukhanovskii Snowflake Control Development		0
23	3:15	Canik	EPH Access and Long Pulse Development	1	0
24	3:20	Battaglia	Development of VERY Long Pulse H-Modes	2	0
25	3:25	All	Group Discussion		
			Totals:	32	0

MEETING: B331, 1:30 P.M. Tuesday (Director's Conference Room)

RF Heating and Current Drive Goals

- Establish reliable coupling in L- and H-mode plasmas, w/ and w/o NBI.
- Characterize HHFW absorption in NBI-heated plasmas
- Generate non-inductive low current (I_P~300 kA) H-modes with HHFW alone.
- Measure O-X-B coupling with synthetic aperture microwave imaging (SAMI).

RF Heating and Current Drive Breakout Session Agenda

	Speaking Time	Author	Title	Time Requested	Time Allocated
1	9:10	Perkins	Characterizing SOL Losses in H-Mode	1.5	0
2	9:20	Bertelli	HHFW Absorption in NB Heated Plasmas	2	0
3	9:30	Perkins	Plasma-Antenna Interactions	1	0
4	9:35	Menard	Scoping Study for Impurity Reduction	1	0
5	9:40	Lau	SOL Reflectometer & Validating models	1	0
6	9:45	Bertelli	HHFW CD measurements and validation	1	0
7	9:50	Bertelli	HHFW Effect on Toroidal Rotation	1	0
8	10:00	Smith	BES to measure HHFW wavefield	0.5	0
9	10:05	Golfinopoulos	Coupling to Plasma Fluctuations Using Amp	1	0
10	10:15		Group Discussion		
			Totals:	6.5	0

MEETING: B252, 9:00 A.M., Wednesday

Solenoid Free Start-up and Ramp-up Goals

- Commission the CHI Hardware
- Recover CHI plasma initiation
- Inductive ramp-up of the CHI plasma
- HHFW heating and CD of low I_P plasmas
- HHFW heating of CHI formed plasmas
- NBI overdrive of low and moderate I_P plasmas
- Sustainment of NBI overdriven cases with NBI and pressure driven currents
- Supporting activities for Point Source Helicity Injection
- Impact of controlled fluctuations on edge current drive (MHD)

Solenoid Free Start-up and Ramp-up Breakout Session Agenda

	Speaking Time	Author	Title	Time Requested	Time Allocated
1	1:40	Raman	Transient CHI Plasma Startu-up	4	0
2	2:00	Nelson	Inductive flux saving of Inductively	2	0
3	2:15	Ebrahimi	Plasmoid instability during CHI	1	0
4	2:30	Poli	NBI Overdrive	2	0
5			HHFW Heating of CHI Discharges	1	0
6	2:45	Taylor	HHFW Ramp-up of Inductively Initiated	1.5	0
7			Low Plasma Current, fully non-inductive HHFW H-modes	2	0
8	3:05	Reusch	Characterization of the scrape off layer density and	1	0
9	3:20	Nelson	Impact of controlled fluctuations on edge current drive	0	0
10	3:25		Group Discussion		
			Totals:	14.5	0

MEETING: B331, 1:30 P.M. Wednesday (Director's Conference Room)

