

Supported by

Minimize density at start of flattop

Coll of Wm & Marv Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

D. J. Battaglia, S. P. Gerhardt, R. Maingi, S. Kaye D. Mueller ...

and the NSTX Research Team

2015 NSTX-U Research Forum Particle Control Parallel Session

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep

Typical recipe for H-mode access during I_p ramp: CS gas + 4-6 MW of NBI

Example low density startup (141177) No prefill or LFS gas, CS gas after 80 ms LH transition during 6 MW of NBI ($I_p \sim 650$ kA)

Low density startup would benefit from LH transition with reduced CS gas and lower NBI

Meeting name – abbreviated presentation title, abbreviated author name (??/??/20??)

Low n_e Shots Fail When Rotating Modes Lock, Avoid this Issue by Adding Early Gas

Meeting name - abbreviated presentation title, abbreviated author name (??/??/20??)

NSTX I_p Ramp-up Was Designed to Save Flux

- Flux saving measures
 - Early LH to increase T_e , reduce I_i
 - CS gas, divert around 0.1s (500 kA)
 - Large beam heating during ramp
 - "Fast" I_p ramp to flattop (3 6 MA/s)
- Gas programming built around these desires
 - CS puff valve gave reliable H-mode transition
 - Puff valve with long tube injects gas well after the LH transition
 - Prefill and LFS gas to hold off mode locking
 - Hypothesis: edge neutrals cool edge, allow current penetration to a more stable current profile

First Proposal: Explore Minimum Early Gas versus Fueling Locations and LH Transition Timing

- Establish fueling requirements for LH at 500kA in I_p ramp with 6 MW NBI
 - Explore CS gas requirements for reliable (not dithering) LH transition with different CS injection systems
 - First test of larger diameter tubes for faster pumpout
 - Shoulder vs midplane injection gas requirement
 - Minimize pre-fill and LFS gas for suitable breakdown and locked-mode avoidance
 - Investigate utility of I_p hold or dip to induce LH transition with less gas
- Delay step from 4MW to 6MW for LH at 900 kA in I_{p} ramp
 - Reevaluate minimum CS and LFS gas required for LH transition and MHD avoidance
- Other ideas to incorporate if time...
 - SGI vs CS
 - Impact of NBI preheat level and timing and mix (edge rotation is good)
 - Diverting time, kappa and triangularity during ramp

Second Proposal: Characterize Minimum Density versus I_p Ramp Rate

- Establish minimum fueling requirements for a fast (3 MA/s) and slow (1 MA/s) I_p ramp > 400 kA
 - Does a slower ramp reduce LFS gas loaded needed for locked-mode avoidance or reduce CS gas for LH transition?
- Investigate trade-offs in early ramp rate (I_p < 400 kA)
 - High-voltage (CHI-like) to get fast rise, large R_p , low I_i
 - Low-voltage for improved current penetration

Considerations

- Experiment focuses on front-end of discharge
 - Back end is available for additional physics
 - For example: ASC long pulse development
- Could be performed in B or Li
 - Might want an optimized I_p ramp scenario for both conditions

