

Supported by

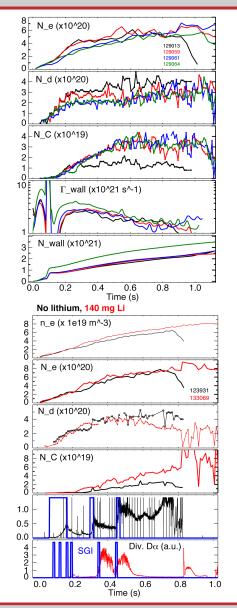
Particle control task force proposals

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

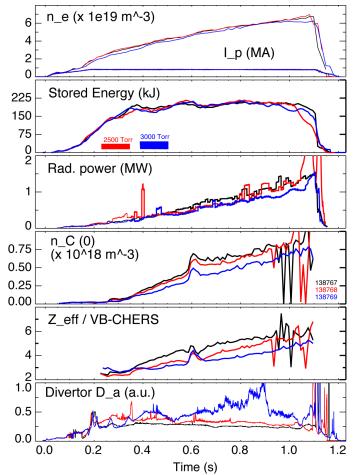
Vlad Soukhanovskii

and the NSTX Research Team

NSTX-U FY2015 Research Forum Princeton, NJ 24 February 2015



Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep


1. Recycling and pumping with lithium coatings

- During B2Li transition
 - Document poloidal distribution of recycling
 - Measure relative recycling coefficients in different poloidal locations
 - Apply particle balance model to infer wall pumping
 - Use SGI pulse technique to infer pump-out times using LPs and D- $\!\alpha$
 - Use spectroscopy to measure H/D ratios
 - Correlate measurements with MAPP retention measurements if possible
- Goals
 - Lithium coatings and amount vs pumping rate, recycling levels and distribution
 - B2Li effect on fuel particle balance
 - Correlate with MAPP XPS and retention measurements

2. Divertor gas puff effect on impurity reduction

- In NSTX, weak divertor gas puffing was used to significantly reduce core carbon, metal concentrations and P_{rad}.
- UEDGE modeling, contrary to expectations did not show much physical and chemical carbon source reduction
- Need to understand mechanism
 - SOL/divertor impurity sputtering reduction
 - Parallel SOL force balance
 - ion thermal gradient force
 - impurity entrainment in increased SOL viscous flow
 - edge neoclassical pinch reduction
- Repeat the experiment before and after lithium
- Compare to UEDGE model with drifts
- Potential solution to high-Z erosion

3. Assess high-Z granule injection and compare with UEDGE-DUSTT ablation model

- Collaboration with R. Lunsford (PPPL), R. Smirnov, S. Krasheninnikov (UCSD)
- Use the last day of the FY2015 run to inject Mo and W granules
 - 1-10 granules per injection
 - 150-300 um, 800um, 7e19 particles each
 - 300 ms duty cycle
- Goals
 - Measure granule penetration, high-Z emission from edge and core charge states, radiated power
 - assess if LGI can be used for high-Z transport experiments
 - Measure Mo and W fluxes in the divertor w.r.t. magnitude of material injected
 - Benchmark UEDGE-DUSTT code
 - Dynamics of ablation along granule trajectory
 - High-Z transport to core and divertor

