Optimize He-dispersed lithium evaporation to understand role of PFCs without direct lithium evaporation

NSTX-U Research Forum – PC-TF February 2015

Filippo Scotti, Daren Stotler, Charles Skinner, Vlad Soukhanovskii

Lawrence Livermore National Laboratory

NSTX Upgrade

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences., Lawrence Livermore National Security, LLC

Role of upper divertor PFCs for impurities and plasma performance not understood in NSTX

- <u>Motivation</u>: Continuous improvement in global plasma performance observed with increase in pre-applied lithium evaporation
 - Speculation that this could be related to the increasing role of PFCs without direct evaporation, including upper PFCs [Maingi, 2011]
 - Unknown role of upper PFCs impurity sources
- <u>Goal</u>: Optimize upper PFCs conditioning via He-dispersed evaporation aided by Monte Carlo simulations
 - Builds upon XP951 and 2011 NSTX-ROF by Skinner & Stotler
- Support first year goal of Five year plan Thrust MP-1:
 - "Experiments will be conducted to improve understanding of the role of more complete coverage of the PFCs by evaporated lithium using upward-facing evaporators and/or diffusive evaporation..."

Mixed results obtained in XP951, without consistent reduction in core impurities

- XP951 used He-dispersed evaporation to address upper PFCs sources
 - · Reduction in core impurities not consistently observed
 - Results possibly hampered by off-normal plasma wall interaction (SFLIP, HHFW limiter)
 - Outgassing during evaporation prevented careful control of gas pressure
 - Significant H₂O partial pressures (1.e-6 Torr)

STX-L

- Second half of XP951 already used MC guided evaporation (D. Stotler)
 - Stepped helium pressure to achieve uniform coating distribution

PC-TF XP Proposals, Filippo Scotti

Establish effect of coatings of upper PFCs for particle control, plasma performance

- Establish Li conditioned ELM-free lower-div-biased H-mode
 - Already characterized by first lithium introduction XP
- Maintain steady He press. via flow from leak valve (2011 proposal)
- Optimize He-dispersed Li evaporation to gradually increase upper PFC Li dose, maintaining constant areal densities on the lower PFCs
 - Study evolution of impurity sources, recycling in upper divertor
 - Study evolution of plasma performance and particle balances
- Repeat in double null configuration
- New upper camera view will help qualitatively characterize coatings distribution and validate Monte Carlo calculations
- This should run shortly after main lithium introduction to avoid large lithium buildups and migration to upper divertor

