Science

Development of High-Current Long Pulse Shots

Coll of Wm \& Mary
Columbia U
CompX
General Atomics
FIU
INL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Lehigh U
Nova Photonics
ORNL
PPPL
Princeton U
Purdue U
SNL
Think Tank, Inc.
UC Davis
UC Irvine
UCLA
UCSD
U Colorado
U Illinois
U Maryland
U Rochester
U Tennessee
U Tulsa
U Washington
U Wisconsin
X Science LLC
D. J. Battaglia, S. P. Gerhardt, J.E. Menard, R. Maingi,...
and the NSTX Research Team
2015 NSTX-U Research Forum ASC Parallel Session

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U
Kyushu Tokai U NIFS
Niigata U
U Tokyo JAEA
Inst for Nucl Res, Kiev loffe Inst TRINITI
Chonbuk Natl U NFRI
KAIST
POSTECH
Seoul Natl U ASIPP
CIEMAT
FOM Inst DIFFER
ENEA, Frascati
CEA, Cadarache
IPP, Jülich
IPP, Garching
ASCR, Czech Rep

Why Target Very Long Pulse Discharges?

- Longest possible pulses will be useful for:
- Demonstrating disruption-free operation.
- Studying particle control and material migration physics.
- Demonstrating unambiguously stationary conditions
- Longest possible pulses will challenge:
- Our MHD control methods.
- Need best available EFC.
- Our shape control
- Our ability to mange the $\mathrm{OH} / T F$ relative temperatures, optimize the OH flux consumption.
- Beam system
- Drift duct pressure and their tuning waveforms
- Our particle control capabilities.
- This may be the ultimate limiting factor.
- Goal (this year)
- Operate 5 second plasmas with the highest possible current.

So What Might NSTX-U Ultimately Provide?

- Highest current consistent with $\mathrm{q}_{\text {min }}>1.0$ and solenoid flux limit.
$-B_{T}=0.75 \mathrm{~T}$.
- Two configurations of beams:
- $6 \times 60 \mathrm{kV}: 8$ seconds total
- $3 \times 80 \mathrm{kV}$, staggered: 10 seconds total
- Note: full pre-charge may not be available in the first year.

Proposed Plan

- Configure for $0.75 \mathrm{~T}, 80 \mathrm{kV}$ beams
- Warn beams well ahead of time that they will be asked for long pulse
- Using four 80 kV beams (50, 60, 70, 130), optimize shape, fuelling, pre-charge around 1 MA .
- Don't strive for non-inductive, but hopefully use the inductive current to stabilize things, raise betaT.
- Attempt to minimize front-end fuelling.
- If $q_{\text {min }}$ dropping to/beneath 1 is problem, then reduce I_{p} and continue.
- Once longest pulse is achieved at 1.0 MA, then repeat at 1.2 MA.
- Other considerations:
- Lithium vs. Boron:
- May actually control the electron inventory better with boron.
- But flux consumption and MHD triggering from ELMs will be undesirable?
- Diagnostics:
- All profile diagnostics required.
- Would be nice to have the full complement of impurity monitors, as particle accumulation may be the biggest problem.

