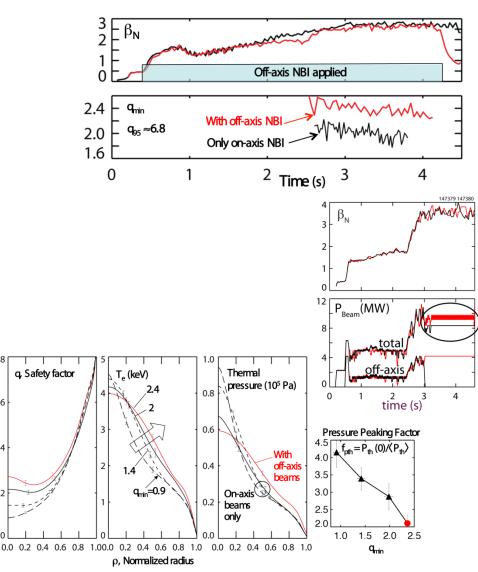

Compare the benefits of off-axis NBI for advanced scenarios in low and medium aspect ratio devices

J.R. Ferron¹, C.T. Holcomb²

¹General Atomics

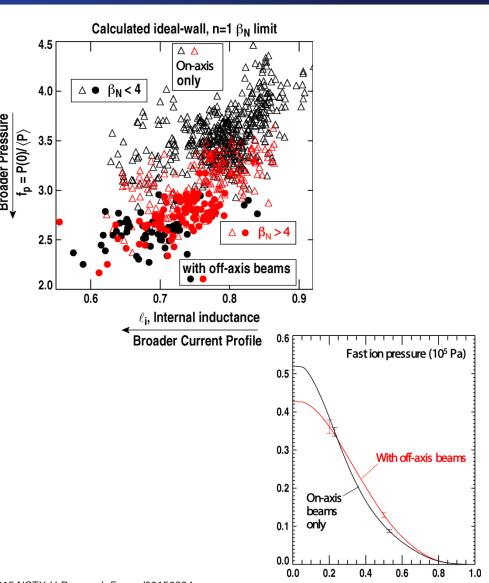
²Lawrence Livermore National Laboratory

Presented at the NSTX-U Research Forum February 24, 2015



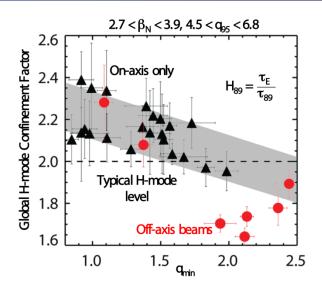
Goal: Compare off-Axis Beam Injection in NSTX-U and DIII-D

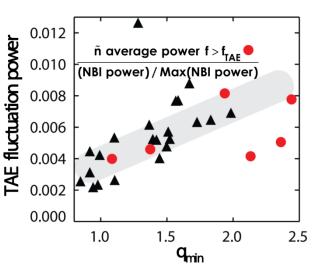
- Examine the effect on the current, pressure, rotation profiles and the β_N limit.
- Perform experiments on NSTX-U that parallel those initially performed on DIII-D after the installation of off-axis injection capability (and those planned for 2015)
 - Potential list of topics described here
 - The DIII-D results are documented in Ferron et al., Phys. of Plasmas 20, 092504 (2013) and Holcomb et al. Nuc. Fusion 54 093009 (2014).
- Should yield aspect ratio scaling data
- Importance: Optimization of current and pressure profiles is the key to advanced tokamak operation
- The results of this experiment would be contributions to the Joint Research Target report for 2015.
 - JRT addresses the effect of the current and pressure profiles on stability and confinement.


Access q_{min} > 2 using off-axis neutral beam injection

- Document accessible q_{min} vs choice of beam sources and n_e
 - Use an early H-mode transition and heating during the I_p rampup to initially create a current profile with high q_{min}
- Compare confinement with on or off-axis injection.
- Compare n_e and T profiles at constant injection power but different beam deposition profile
- Assess the pressure peaking factor as a function of q_{min} and injection location

Map the calculated ideal MHD stability limit


- As a function of q_{min} and ℓ_i using measured profiles.
- Effectiveness of off-axis injection in broadening the fast ion density profile in high β_N discharges.
- Assess the experimentally achievable β_N as a function of q_{min} and pressure profile width.
 - Document the effect of increasing β_N on the pressure profile width.
 - Determine the maximum β_N that can be maintained for multiple τ_R



ρ, Normalized radius

Look for anomalous fast ion loss that limits confinement and β_{N}

- Especially at q_{min} > 2
- Assess the maximum achievable current profile width using large outer gap to increase the beam injection radius.
 - Effect on the β_N limit
- Aim for f_{NI} = 1
 - Compare the measured current density profile evolution and f_{NI} at high β_{NI} with transport code calculations

