

Coll of Wm & Mary Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Think Tank. Inc.

CompX

FIU

INL

LANL

LLNL

MIT

Lodestar

Lehigh U

Princeton U

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Tennessee

U Washington

X Science LLC

U Wisconsin

U Illinois

U Tulsa

UCLA

UCSD

ORNL

PPPL

SNL

Supported by

S.P. Gerhardt, et al.

ASC Breakout Session, 2015 Research Forum B331 2/24/2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

Outline and General Process

- Goal: Develop a high non-inductive fraction H-mode scenario, ideally achieving full non-inductivity.
- Features of the XP idea:
 - Fix the $I_{\rm P}$ request, and continue to do $I_{\rm P}$ feedback via the loop voltage.
 - Use standard inductive current ramps.
 - Develop the non-inductive state after SoFT.
 - Beam heating only...no RF requested.
 - Use the highest TF allowable.
 - 10-15 cm outer gaps, highest elongation that can be reasonably achieved.
 - Use the loop voltage, simple scaling for the confinement and noninductive fraction to guide the XP.
 - Between shot TRANSP sure would be nice...

Anticipate Developing 100% Non-Inductive Scenarios at the 500-700 kA Range

🔘 NSTX-U

Roughest Shot Plan

- From modeling, determine a likely operating point.
 - Right now, I think 0.65 T, 600 kA, 6-8 MW made up of [60,70,130] + other sources.
- Establish baseline at this field and current, ~65-75% of the baseline power.
 - Reduced power to avoid hard beta limits.
- Increase the power towards the non-inductive value, until either fully non-inductive, or reaching beta limit.
- If it becomes clear that non-inductivity is not possible at this current, then reduce the plasma current and power, and repeat the power scan.
- Once a near non-inductive point is found, then:
 - Scan the beam sources around that operating point.
 - For different beam sources, make small modifications to the plasma current request around that operating point, to account for different beam current drive efficiencies.

Other Considerations

- Density: Target $f_{GW} \sim 0.6-0.8$, but in the end will take what we can get.
 - Use whatever fuelling scheme seems most reliable at that time, but would prefer to minimize the HFS fuelling to the extent that it is possible.
- PFC conditioning:
 - Would prefer to do this in both Boronized and Lithiumized PFCs.
 - Boronized case with ELMs provides Z_{eff} control, but maybe D_2 accumulation.
 - Lithiumized case provides higher confinement and $\rm D_2$ control, maybe with too high a $\rm Z_{eff}.$
 - If the granule injector proves capable of triggering ELMs in the Lithiumized state, then may want to use that on a few shots.
- OH coil dynamics...will have essentially a flat I_{OH} waveform during the flat-top.
 - Need to pick a value of the pre-charge that will result in OH heating at about the same rate as the TF heats.
 - May want to have a small precharge, so that we swing through zero and have negative ${\rm I}_{\rm OH}$ during the flat-top
 - makes returning I_{OH} to zero easier.
 - Makes the scenario more forgiving to changes in the ramp-up flux consumption (?).

