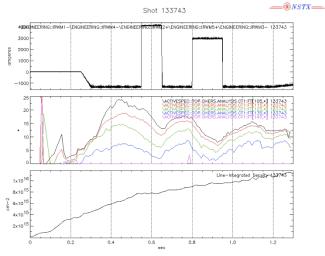

- Microwaves reflect from plasma at *cutoff*: $\omega^2 = \omega_p^2 \propto n$
- Reflectometers measure path length changes caused by density fluctuations (δn)
 - Microwaves launched radially in midplane: frequency array ⇒ radial array
- Large array of frequencies:
 –Q-band: 30, 32.5, 35, 37.5, 42.5, 45, 47.5 & 50 GHz
 –V-band: 55, 57.5, 60, 62.5, 67.5, 70, 72.5 & 75 GHz
 –W-band: 82, 83.3, 84.7 & 86 GHz
- Large radial coverage in high density plasmas ($n_0 \sim 1 9 \ge 10^{19} \text{ m}^{-3}$)


UCI

XP – Rotation effects on CAEs and GAEs

- CAE/GAEs potentially significant to core energy & fast-ion transport
 - predictive capability ultimately necessary
- Expect structure & frequency key factors in impact sensitive to rotation
- Experiment: n=3 braking \Rightarrow rotation scan
 - measure structure & frequency
 - monotonic density profile for reflectometer array
 - 1/2 run day (1/4 minimum)
 - B_T scan and different NB sources is time permits
 - compare with simulation: HYM, CAE3B
- Furthers understanding of anomalous core energy transport:
 - R(15-1): Assess H-mode energy confinement .. with higher BT, Ip and NBI heating power
 - R(16-1): "Assess tauE ... at low nu* with full confinement and diagnostic capabilities"

Backup

UCLA 3