Generating and Characterizing an Edge Harmonic Oscillation Via Counter-Ip Torque Injection

G. McKee, D. Smith, R. Fonck, U. Wisconsin

Motivation: Quiescent H-Mode Plasmas Offer the Potential for High-Confinement ELM-Free Operation in the ST

- ELM-free operation for many $\tau_{\rm E}$
- Edge Harmonic Oscillation in pedestal, drives particle flux (replacing ELMs)
 - Lives on P-B stability boundary; Low-n saturated Kink-Peeling mode?
- Demonstrated over wide parameter range on DIII-D

• EHO Features:

- Multiple harmonics observable (~10 or more)
 - Magnetic; fundamental, n=1, 2 or 3 typically
- "Global" mode across core/pedestal/SOL
 - Peaks near steep gradient region of pedestal
- Clear 2D spatial structure
 - Radial phase shift; not island like
- Outward skewness of ñ-fluctuation
 - Can transport particles radially outward

Generating and Characterizing an Edge Harmonic Oscillation Via Counter-Ip Torque Injection

Generating the EHO

 Exceptionally deep E_R well near pedestal facilitates formation of EHO: may drive and saturate instability via shear flow

Experiment plan

- Counter-I_P NBI
 - Toroidal rotation and diamagnetic terms superimpose to generate very deep E_r well
- Low-density/ ν^*
- Additional tangential NBI on NSTX-U
 - Will need to assess fast-ion losses
- If counter-Ip is not feasible, Co-Ip may allow
 - More difficult to achieve in DIII-D w/Co-Ip
- Utilize 2D BES, GPI, other diagnostics to measure spatial and temporal characteristics of EHO

• Goal:

 Determine feasibility and applicability of QH-Mode in STs; identify physics of EHO drive & saturation

Time Series shows EHO Skewness

0.2

Signal (V.)

ρ=0.88 ρ=0.91 ρ=0.95

o=0.99

2601.2

MADISO

