Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** Old Dominion ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD U Colorado **U** Illinois **U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

NSTX-U

ELM-induced fueling effects on the pedestal evolution

Supported by

A. Diallo, D. Battaglia, F. Scotti, V. Soukhanovskii, J. Boedo, et al.

NSTX-U Pedestal NSTX-U ROF February 24, 2015

U.S. DEPARTMENT OF

ENERGY

Culham Sci Ctr York L Chubu L Fukui L Hiroshima L Hyogo L Kyoto L Kyushu L Kyushu Tokai L NIFS Niigata L U Tokyo JAÉA Inst for Nucl Res, Kiev loffe Ins TRINIT Chonbuk Natl L NFR **KAIS1** POSTECH Seoul Natl L ASIPF CIEMAT FOM Inst DIFFER **ENEA**, Frascat CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Science

Outgassing effects on the pedestal recovery rate during the inter-ELM phase

- Test Pigarov JNM 2014 hypothesis that the pedestal recovery rate is strongly impacted by the neutral reflux produced by ELMs
- JET showed that increased outgassing by the walls results in an increase of the ELM frequency [De La Luna IAEA 2014]
- Goals/Implications
 - Assess the wall physics processes in the pedestal recovery
 - Could provide the means to control the pedestal evolution

- Start with a LSN intrinsic ELMy discharge
 - Vary the fuelling rate to impact the pedestal recovery rate
 - Monitor the carbon influx between ELMs
 - Investigate the contribution between the wall vs divertor sources
 - Vary/shift the outer and/or inner gaps in steps TBD
 - Similarly, perform a downward shift of the plasma (in steps TBD)
- Repeat above with Li/B granule injector and RMP to trigger ELMs
 - Attempt to time triggered ELMs with MPTS pulses (?)

Useful run time = 1 day in Lithiated and Boronized wall conditions