
Real-‐Time	  Op,mal	  Error	  Field	  Correc,on	  

•  n=1	  mode	  error	  field	  correc-on	  is	  crucial	  for	  
n=1	  mode	  suppression	  

•  We	  can	  in	  real-‐-me	  change	  the	  EFC	  to	  match	  
the	  op-mal	  calcula-ons	  

•  Progress	  in	  the	  op-mal	  EFC	  modeling.	  	  
•  Op-mal	  can	  be	  calculated	  from	  the	  EFIT	  

shape,	  boundary	  and	  the	  coil	  currents	  
(without	  perturbing	  the	  plasma).	  

•  Calcula-on	  and	  the	  compass	  scan	  are	  
indis-nguishable!	  	  

•  Every	  part	  (ramp	  up/down)	  of	  shot	  will	  have	  
real-‐-me	  op-mal	  EFC!	  Great	  improvement	  
over	  current	  situa-on.	  	  

C.	  Paz-‐Soldon	  
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the axisymmetric poloidal flux ψp related to the axisymmetric
poloidal field by

Bθ = −∇ψp × ∇φ. (A.6)

The local nonaxisymmetric radial field B̃r is related to a
nonaxisymmetric poloidal flux, ψ̃p, defined so that

B̃r = −(∇ψ̃p × ∇φ)r = − RoBo

qBθR3

∂ψ̃p

∂θ
. (A.7)

For small displacements, the radial displacement in poloidal
flux of a magnetic line under the influence of B̃r is

dψline = (∇ψp)r
B̃r

Bφ

dsφ = − 1
q

∂ψ̃p(θ, φ)

∂θ
dφ, (A.8)

where equations (A.6) and (A.7) were used, ψ̃p is evaluated
at the local θ of the line, and φ is a convenient independent
variable for tokamaks. Now consider the single sinusoidal
harmonic ψ̃m,n cos αm,n of ψ̃p, where ψ̃m,n is a positive number,
and αm,n = n(φ − φo) − mθ has m poloidal and n toroidal
periods and is exactly pitch resonant with the unperturbed line.
The line displacement becomes

dψline = m

q
ψ̃m,n sin αm,ndφ. (A.9)

Let ψs be the value of ψp on the unperturbed resonant surface.
The background magnetic field is sheared, so as the line moves
radially from the resonant surface, the line also advances or
lags in phase αm,n relative to the unperturbed line, due to
dq(ψp)/dψp. Neglecting the smaller contribution of B̃θ to
the changing phase, the changing phase at the line obeys

dαm,n = m

(
1

q(ψs)
− 1

q(ψs + ψline)

)
dφ = m

q2

dq

dψp
ψlinedφ.

(A.10)
Eliminating dφ between equations (A.9) and (A.10) yields an
equation that can be integrated for ψ2

line as a function of αm,n

in the usual way. The widest closed line trajectory that crosses
the unperturbed surface defines the full width of the island,
which in units of poloidal flux is

wp =
√

16
q

q ′ ψ̃m,n, (A.11)

with q ′ = dq(ψp)/dψp.
SURFMN calculates B, from which it obtains B̃r on a

surface. It does not calculate ψ̃p, so equation (A.11) must be
recast in terms of a correctly Fourier analysed B̃r . The two-
dimensional Fourier analysis of ψ̃p in helical harmonics can
be written as

ψ̃p(θ, φ) = ψ̃0,0

2
+

∑

m,n

[ψ̃c,m,n cos αm,n + ψ̃s,m,n sin αm,n],

(A.12)

ψ̃c,m,n = 1
(2π)2

!
2ψ̃p cos αm,ndθdφ, (A.13)

and similarly for the sine coefficients. The double sum is for
−∞ < m < ∞ and 0 < n < ∞, excluding m, n = 0, 0. The
double integral is 2π each around the poloidal and toroidal

directions. The Fourier coefficients of the product (J B̃r ) are
calculated in the same way. In accordance with equation (A.7),
the Fourier amplitudes are related by

(J B̃r )m,n = mψ̃m,n. (A.14)

Note that the B̃r field corresponding to a sinusoidal flux
harmonic is not sinusoidal in θ in the magnetic coordinate
system. However, we define a surface-averaged equivalent B̃r

Fourier harmonic amplitude,

Bc,r(m,n) ≡
!

JBr cos αm,ndθdφ!
Jdθdφ = S

, (A.15)

and similarly for the sine coefficients. The amplitude
Br(m,n) = (B2

c,r(m,n) + B2
s,r(m,n))

1/2 is the physical harmonic
amplitude in the high-aspect-ratio circular cross section limit,
and it is a logical extension of the definition to low aspect
ratio and noncircular plasmas. Noting that the numerator
in equation (A.15) is (2π)2 times the Fourier coefficient
(J B̃r )m,n, equation (A.14) yields

ψ̃m,n = S

(2π)2m
Br,m,n. (A.16)

Then the island width, equation (A.11), can be written in terms
of the surface-averaged Br,m,n as

wp =

√
16
m

q

q ′
S

(2π)2
Br(m,n). (A.17)

SURFMN actually uses normalized poloidal flux ψN as the
radial coordinate for island width calculations. It is defined as

ψN =
∣∣∣∣

ψp

'ψp

∣∣∣∣, (A.18)

where 'ψp is the difference between ψp at the magnetic axis
and the last closed flux surface. ψN ranges from 0 at the
magnetic axis to 1 at the last closed surface. The island width
in units of ψN is simply

wpN =
√

16
m|'ψp|

q

dq(ψN)/dψN

S

(2π)2
Br(m,n). (A.19)

In this paper, we use
√

ψN as the radial coordinate for plots,
in order to facilitate comparisons of our results with previous
work by others [16, 17, 25]. We still calculate island widths
in units of ψN according to equation (A.19), and then we take
the square root of the resulting island endpoints to obtain the
widths in units of

√
ψN. The radial variable

√
ψN has the

advantage of being close to the physically intuitive r/a, while
ψN has the advantage of expanding the narrow, high-shear
pedestal layer twofold.

The formulation of island widths and Br(m,n) calculation
were tested in various ways. Cases of widely separated islands
were checked against Poincaré plots of integrated magnetic
lines for the same field sources. Another test is to make
Poincaré plots for the combined fields of two very different
sources whose relative amplitudes are adjusted so that the
net Br(m,n) should be zero at a selected resonant surface, if
the individually calculated Br(m,n) were correct. This is more
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•  In	  real-‐,me	  calculate	  3D	  perturba,ons	  
due	  to	  3D	  coils	  
–  Use	  surmnf	  to	  convert	  to	  straight-‐line	  
field	  coordinates	  

–  Find	  the	  orthogonal	  component	  Br(m,n)	  	  
–  Find	  the	  island	  size	  and	  σchir	  

–  Kink-‐resonance	  
•  Control:	  
–  Choose	  phase	  of	  the	  coils,	  I(θ),	  
maximize	  kink	  or	  σchir	  

•  Test	  different	  EFC	  mechanisms	  
•  Already	  implemented	  and	  tested	  on	  DIII-‐D	  
•  Reproduce	  the	  same	  results	  here	  



3D	  coil	  NTM	  Interac,on	  
•  Two	  effects	  on	  the	  island	  forma,on	  from	  3D	  coils.	  	  

–  Rota,on	  shear	  	  
–  Edge	  stochas,za,on	  	  	  

•  Study	  these	  two	  effects	  at	  NSTX-‐U	  
–  DIII-‐D	  showed	  some	  interac,on	  of	  rota,on	  and	  NTMs	  
–  There	  is	  no	  study	  of	  the	  effect	  stochas,za,on	  on	  NTM	  forma,on	  yet	  (that	  I	  

know)	  

•  We	  would	  form	  shots	  with	  NTMs	  (not	  2/1)	  vary	  the	  rota,on	  profile	  
with	  NBI	  and	  then	  scan	  3D	  coil	  currents	  

•  For	  the	  stochas,za,on,	  we	  need	  an	  island	  close	  to	  the	  edge	  rho~0.9	  
•  Make	  trying	  to	  reduce	  the	  adjust	  the	  edge	  q	  (q95)	  to	  be	  ~2.1	  or	  so	  
•  Perturb	  the	  plasma	  for	  NTM	  forma,on	  (beta	  ramp?)	  
•  Turn	  on	  the	  3D	  coils	  at	  various	  currents	  

–  Does	  it	  effect	  the	  2/1	  NTM	  forma,on	  	  

•  We	  can	  try	  higher	  mode	  numbers	  but	  harder	  to	  dis,nguish	  	  


