
Real-­‐Time	
  Op,mal	
  Error	
  Field	
  Correc,on	
  

•  n=1	
  mode	
  error	
  field	
  correc-on	
  is	
  crucial	
  for	
  
n=1	
  mode	
  suppression	
  

•  We	
  can	
  in	
  real-­‐-me	
  change	
  the	
  EFC	
  to	
  match	
  
the	
  op-mal	
  calcula-ons	
  

•  Progress	
  in	
  the	
  op-mal	
  EFC	
  modeling.	
  	
  
•  Op-mal	
  can	
  be	
  calculated	
  from	
  the	
  EFIT	
  

shape,	
  boundary	
  and	
  the	
  coil	
  currents	
  
(without	
  perturbing	
  the	
  plasma).	
  

•  Calcula-on	
  and	
  the	
  compass	
  scan	
  are	
  
indis-nguishable!	
  	
  

•  Every	
  part	
  (ramp	
  up/down)	
  of	
  shot	
  will	
  have	
  
real-­‐-me	
  op-mal	
  EFC!	
  Great	
  improvement	
  
over	
  current	
  situa-on.	
  	
  

C.	
  Paz-­‐Soldon	
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the axisymmetric poloidal flux ψp related to the axisymmetric
poloidal field by

Bθ = −∇ψp × ∇φ. (A.6)

The local nonaxisymmetric radial field B̃r is related to a
nonaxisymmetric poloidal flux, ψ̃p, defined so that

B̃r = −(∇ψ̃p × ∇φ)r = − RoBo

qBθR3

∂ψ̃p

∂θ
. (A.7)

For small displacements, the radial displacement in poloidal
flux of a magnetic line under the influence of B̃r is

dψline = (∇ψp)r
B̃r

Bφ

dsφ = − 1
q

∂ψ̃p(θ, φ)

∂θ
dφ, (A.8)

where equations (A.6) and (A.7) were used, ψ̃p is evaluated
at the local θ of the line, and φ is a convenient independent
variable for tokamaks. Now consider the single sinusoidal
harmonic ψ̃m,n cos αm,n of ψ̃p, where ψ̃m,n is a positive number,
and αm,n = n(φ − φo) − mθ has m poloidal and n toroidal
periods and is exactly pitch resonant with the unperturbed line.
The line displacement becomes

dψline = m

q
ψ̃m,n sin αm,ndφ. (A.9)

Let ψs be the value of ψp on the unperturbed resonant surface.
The background magnetic field is sheared, so as the line moves
radially from the resonant surface, the line also advances or
lags in phase αm,n relative to the unperturbed line, due to
dq(ψp)/dψp. Neglecting the smaller contribution of B̃θ to
the changing phase, the changing phase at the line obeys

dαm,n = m

(
1

q(ψs)
− 1

q(ψs + ψline)

)
dφ = m

q2

dq

dψp
ψlinedφ.

(A.10)
Eliminating dφ between equations (A.9) and (A.10) yields an
equation that can be integrated for ψ2

line as a function of αm,n

in the usual way. The widest closed line trajectory that crosses
the unperturbed surface defines the full width of the island,
which in units of poloidal flux is

wp =
√

16
q

q ′ ψ̃m,n, (A.11)

with q ′ = dq(ψp)/dψp.
SURFMN calculates B, from which it obtains B̃r on a

surface. It does not calculate ψ̃p, so equation (A.11) must be
recast in terms of a correctly Fourier analysed B̃r . The two-
dimensional Fourier analysis of ψ̃p in helical harmonics can
be written as

ψ̃p(θ, φ) = ψ̃0,0

2
+

∑

m,n

[ψ̃c,m,n cos αm,n + ψ̃s,m,n sin αm,n],

(A.12)

ψ̃c,m,n = 1
(2π)2

!
2ψ̃p cos αm,ndθdφ, (A.13)

and similarly for the sine coefficients. The double sum is for
−∞ < m < ∞ and 0 < n < ∞, excluding m, n = 0, 0. The
double integral is 2π each around the poloidal and toroidal

directions. The Fourier coefficients of the product (J B̃r ) are
calculated in the same way. In accordance with equation (A.7),
the Fourier amplitudes are related by

(J B̃r )m,n = mψ̃m,n. (A.14)

Note that the B̃r field corresponding to a sinusoidal flux
harmonic is not sinusoidal in θ in the magnetic coordinate
system. However, we define a surface-averaged equivalent B̃r

Fourier harmonic amplitude,

Bc,r(m,n) ≡
!

JBr cos αm,ndθdφ!
Jdθdφ = S

, (A.15)

and similarly for the sine coefficients. The amplitude
Br(m,n) = (B2

c,r(m,n) + B2
s,r(m,n))

1/2 is the physical harmonic
amplitude in the high-aspect-ratio circular cross section limit,
and it is a logical extension of the definition to low aspect
ratio and noncircular plasmas. Noting that the numerator
in equation (A.15) is (2π)2 times the Fourier coefficient
(J B̃r )m,n, equation (A.14) yields

ψ̃m,n = S

(2π)2m
Br,m,n. (A.16)

Then the island width, equation (A.11), can be written in terms
of the surface-averaged Br,m,n as

wp =

√
16
m

q

q ′
S

(2π)2
Br(m,n). (A.17)

SURFMN actually uses normalized poloidal flux ψN as the
radial coordinate for island width calculations. It is defined as

ψN =
∣∣∣∣

ψp

'ψp

∣∣∣∣, (A.18)

where 'ψp is the difference between ψp at the magnetic axis
and the last closed flux surface. ψN ranges from 0 at the
magnetic axis to 1 at the last closed surface. The island width
in units of ψN is simply

wpN =
√

16
m|'ψp|

q

dq(ψN)/dψN

S

(2π)2
Br(m,n). (A.19)

In this paper, we use
√

ψN as the radial coordinate for plots,
in order to facilitate comparisons of our results with previous
work by others [16, 17, 25]. We still calculate island widths
in units of ψN according to equation (A.19), and then we take
the square root of the resulting island endpoints to obtain the
widths in units of

√
ψN. The radial variable

√
ψN has the

advantage of being close to the physically intuitive r/a, while
ψN has the advantage of expanding the narrow, high-shear
pedestal layer twofold.

The formulation of island widths and Br(m,n) calculation
were tested in various ways. Cases of widely separated islands
were checked against Poincaré plots of integrated magnetic
lines for the same field sources. Another test is to make
Poincaré plots for the combined fields of two very different
sources whose relative amplitudes are adjusted so that the
net Br(m,n) should be zero at a selected resonant surface, if
the individually calculated Br(m,n) were correct. This is more
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•  In	
  real-­‐,me	
  calculate	
  3D	
  perturba,ons	
  
due	
  to	
  3D	
  coils	
  
–  Use	
  surmnf	
  to	
  convert	
  to	
  straight-­‐line	
  
field	
  coordinates	
  

–  Find	
  the	
  orthogonal	
  component	
  Br(m,n)	
  	
  
–  Find	
  the	
  island	
  size	
  and	
  σchir	
  

–  Kink-­‐resonance	
  
•  Control:	
  
–  Choose	
  phase	
  of	
  the	
  coils,	
  I(θ),	
  
maximize	
  kink	
  or	
  σchir	
  

•  Test	
  different	
  EFC	
  mechanisms	
  
•  Already	
  implemented	
  and	
  tested	
  on	
  DIII-­‐D	
  
•  Reproduce	
  the	
  same	
  results	
  here	
  



3D	
  coil	
  NTM	
  Interac,on	
  
•  Two	
  effects	
  on	
  the	
  island	
  forma,on	
  from	
  3D	
  coils.	
  	
  

–  Rota,on	
  shear	
  	
  
–  Edge	
  stochas,za,on	
  	
  	
  

•  Study	
  these	
  two	
  effects	
  at	
  NSTX-­‐U	
  
–  DIII-­‐D	
  showed	
  some	
  interac,on	
  of	
  rota,on	
  and	
  NTMs	
  
–  There	
  is	
  no	
  study	
  of	
  the	
  effect	
  stochas,za,on	
  on	
  NTM	
  forma,on	
  yet	
  (that	
  I	
  

know)	
  

•  We	
  would	
  form	
  shots	
  with	
  NTMs	
  (not	
  2/1)	
  vary	
  the	
  rota,on	
  profile	
  
with	
  NBI	
  and	
  then	
  scan	
  3D	
  coil	
  currents	
  

•  For	
  the	
  stochas,za,on,	
  we	
  need	
  an	
  island	
  close	
  to	
  the	
  edge	
  rho~0.9	
  
•  Make	
  trying	
  to	
  reduce	
  the	
  adjust	
  the	
  edge	
  q	
  (q95)	
  to	
  be	
  ~2.1	
  or	
  so	
  
•  Perturb	
  the	
  plasma	
  for	
  NTM	
  forma,on	
  (beta	
  ramp?)	
  
•  Turn	
  on	
  the	
  3D	
  coils	
  at	
  various	
  currents	
  

–  Does	
  it	
  effect	
  the	
  2/1	
  NTM	
  forma,on	
  	
  

•  We	
  can	
  try	
  higher	
  mode	
  numbers	
  but	
  harder	
  to	
  dis,nguish	
  	
  


