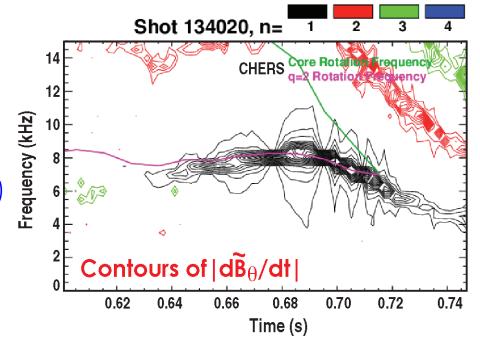
XPs to MSG on n=1 Tearing Progress from Contact with NSTX to Natural q Evolution to Use of Off-axis NBI

- XP10: make contact with NSTX for n=1 tearing stability (La Haye)
- XP47: assess β_N and qmin n=1 tearing stability limits at the increased aspect ratio of NSTX-U (La Haye)
- XP93: compare benefits of off-axis NBI & coordinate with DIII-D (Ferron)
 - FY 2015 JRT: "Conduct experiments and analysis to quantify the impact of broadened current and pressure profiles on tokamak plasma confinement and stability"

Larger Aspect Ratio in NSTX-U May Reduce Stabilizing Curvature for m/n=2/1 Tearing Stability From That in NSTX (Connection with NSTX Could be Done in Weeks 1–4, More Later)

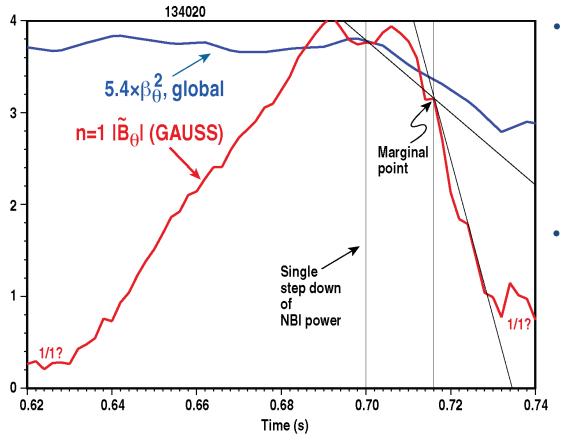
Previous related NSTX XPs include


- 739 Marginal island width of NTMs
- 740 NTM threshold at low rotation
- 801 Further study of 2/1 NTMs
- 915 Influence of rotation and error fields on tearing mode beta limits

using modest L_i evaporation, and mode locking avoided by n=1 <u>and</u> n=3 error field correction (IP = 0.9 MA, BT = 0.44 T, "fixed" q_{95})

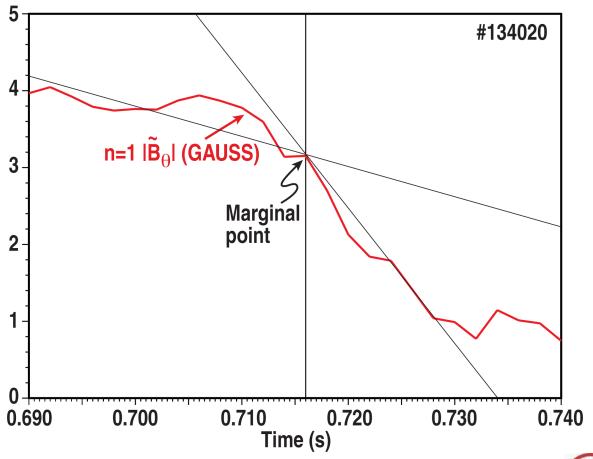
NSTX: Reproducible onset condition

Publications include


- S.P. Gerhardt et al, NF 49, 032003 (2005)
- R.J. Buttery et al, NF 51, 073016 (2011)
- R.J. La Haye et al, PoP 19, 062506 (2012)

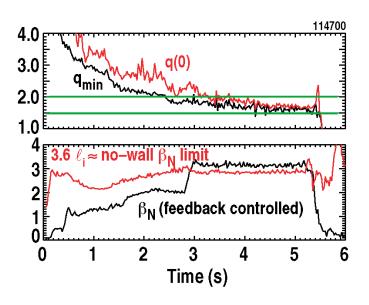
NSTX Exhibits Little Hysteresis in Beta Between n=1 NTM Excitation and Self-Stabilization ("Marginal Point")

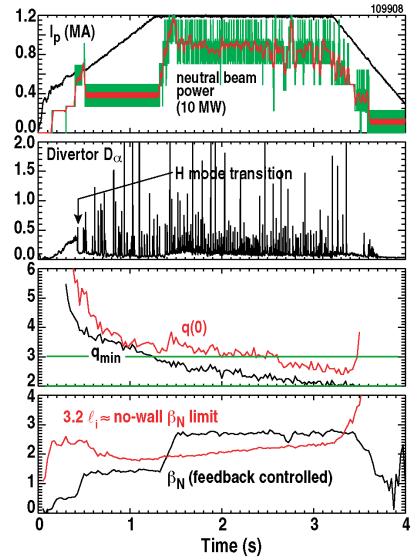
- NBI power stepped down after m=2, n=1 mode saturates
 - mode wanes, then stabilizes



- Classical tearing stability index $\Delta' \approx 0$ inferred
 - curvature D_R balanced by neoclassical bootstrap drive D_{nc}
 - thus little hysteresis
 - advantage for low aspect ratio
- $D_R/D_{nc} \approx -1.2 (a/R)^2$
 - NSTX→NSTX-U
 - $(a/R)^2 \times 2/3$
 - less stable?

Marginal Point is Determined from Change in Slope of Mode Amplitude with Time (NSTX Example Shown)


- Slow decrease in beta (not shown) causes mode to get smaller
 - mode wanes, then stabilizes



The q Profile Timing is Varied in DIII-D by Modifying the Discharge Formation or Delaying the High Beta Phase

- Increased T_e in H-mode slows rate of current penetration
- $1.5 < q_{min} < 3, q_{95} \approx 5$
- Two examples, q_{min} ≈ 2.5, β_N = 2.7 and q_{min} ≈ 1.7, β_N = 3.2 run without significant MHD for discharge duration sweetspots for n=1 stability

