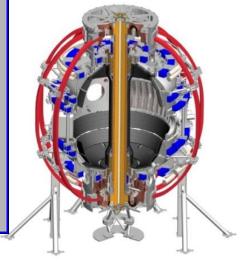


Supported by


Columbia U. Group – NSTX-U Macrostability TSG XPs

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

S. A. Sabbagh, J.W. Berkery, J.M Bialek Y.S. Park, (et al...)

Department of Applied Physics, Columbia University, New York, NY

NSTX-U Research Forum February 25th, 2015 PPPL

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

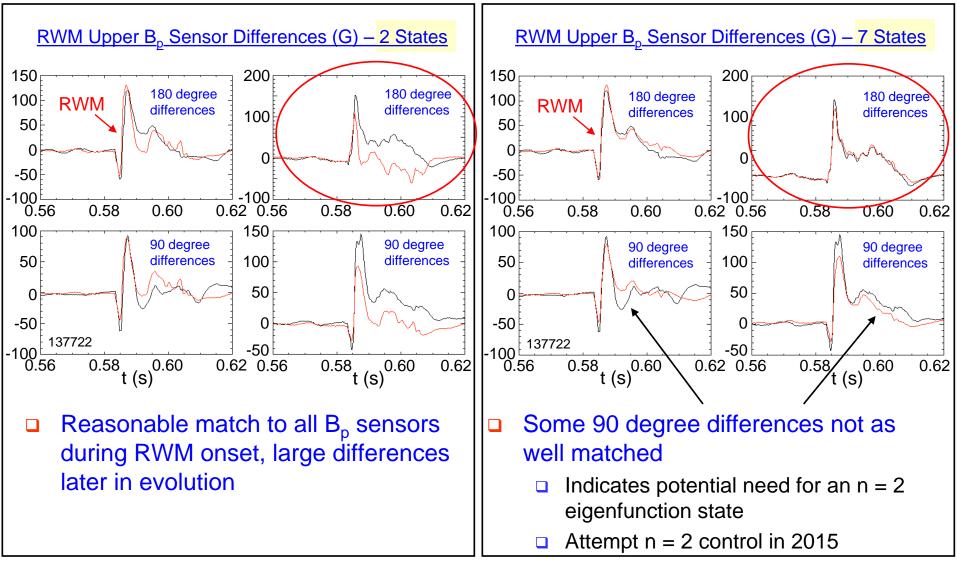
Columbia U. Group 2015 Macrostability TSG XPs (Short Summary)

- XPs (related XPs assigned numbers for "2011 run")
 - RWM stabilization dependence on neutral beam deposition angle (~XP1149) (Berkery)
 - □ RWM stabilization physics at reduced collisionality (~XP1148) (Berkery)
 - RWM state space active control physics (independent coil control) (~XP1145) (Sabbagh)
 - □ RWM control physics with partial control coil coverage (JT-60SA) (~XP1147) (Y-S Park)
 - RWM PID control optimization based on theory and experiment (~XP1111) (Sabbagh)
 - RWM state space active control at low plasma rotation (~XP1146) (Y-S Park)
 - Neoclassical toroidal viscosity reduced v (independent coil control) (~XP1150) (Sabbagh)
 - NTV steady-state rotation at reduced torque (HHFW) (~XP1062) (Sabbagh)
 - Multi-mode error field correction using the RWMSC (to follow initial EFC XP)
 - NTM Entrainment in NSTX-U (Y.S. Park)
- Piggyback XPs

Disruption PAM characterization, measurements, and criteria (Sabbagh, for DPAM WG)
 <u>NOTE</u>: - some shot plans <u>already scoped out</u> in web submissions (not repeated here)
 - run day requests mostly assume leveraging "2nd NBI XP", "Ip/Bt scaling XP"

XP: RWM state space active control physics (independent coil control) – Sabbagh, et al.

Motivation

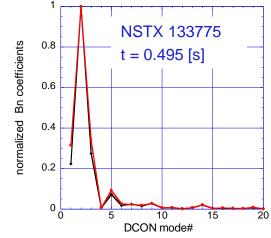

- RWM state space controller (RWMSC) allowing influence of conducting structures, plasma mode shape / response expected to improve control performance, allows greater shielding of control coils needed in future devices
- Improve capability of present NSTX-U RWMSC by using new 2nd SPA, more plasma modes, etc.

Goals / Approach

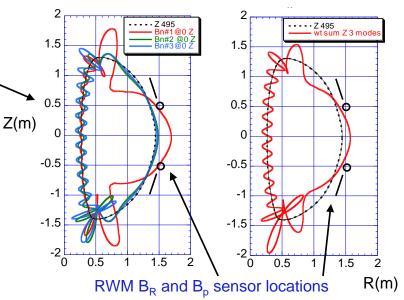
- Examine control aspects of different high performance target plasmas
 - Key step to prepare the RWMSC for general use in the future
- Determine control physics advantages of including influence of wall, choice of input eigenfunction set, inclusion of n > 1 eigenfunctions
- Determine effect of control with 6 independent RWM coils
- Determine influence of reducing effect of conducting structure
- **Examine influence of adding n = 1 RWM PID control using B_r sensors**

- NSTX Research Milestones R(15-3), JRT-16
- □ ITPA joint experiments MDC-17, MDC-21

Increased number of states in RWM state space controller improves match to sensors over entire mode evolution



Black: experiment Red: offline RWM state space controller


Upgrades of new RWM state space controller will leverage new 2nd SPA power supply to study physics effects

- 2nd SPA power supply allows independent control of the 6 RWM coils
 - We need new phase and gain scans (test new control matrices) this was <u>not</u> performed in 2011
- New RWM state space controller physics studies
 - Addition of n > 1 eigenfunction will then yield n = 1, 2 feedback, and higher n based on observer match to wall states
 - Test controller on various high performance targets
 - E.g. (i) fiducial, (ii) low li, (iii) snowflake divertor
 - Eigenfunction variations: e.g. does snowflake divertor configuration reduce divertor mode?
 - Compare controller with influence of wall vs. without influence of wall
- XP needs
 - <u>Request</u>: 1.5 run days

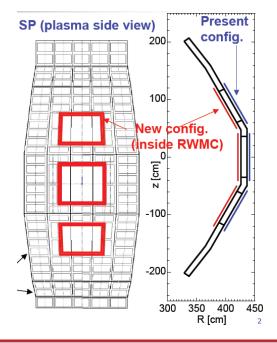
XP: RWM control physics with partial control coil

COVERAGE – Y.S. Park, et al.

Motivation

- Effect of partial coil coverage (e.g. JT-60SA)*, and impact of internal coil loss (e.g. ITER) may lead to "mode non-rigidity" during RWM feedback – the effect on mode control needs to be understood
- NSTX active RWM control failed with 2 coils missing

Goals / Approach


- RWM control in NSTX will be attempted with partial coverage of the RWM coils to test the physics of RWM mode rigidity
- Leverage new independent control of the RWM coils
- Determine the change in the computed multi-mode RWM spectrum and compare to experiment
- Compare attempted control with both the RWM PID controller, and RWM state space controller

Addresses

- *Collaborative RWM stabilization research with JAEA (for JT-60SA) – IEA joint research task
 Request:
- □ ITPA joint research MDC-17, MDC-21

JT-60SA passive plates and RWM control coils

1 run day

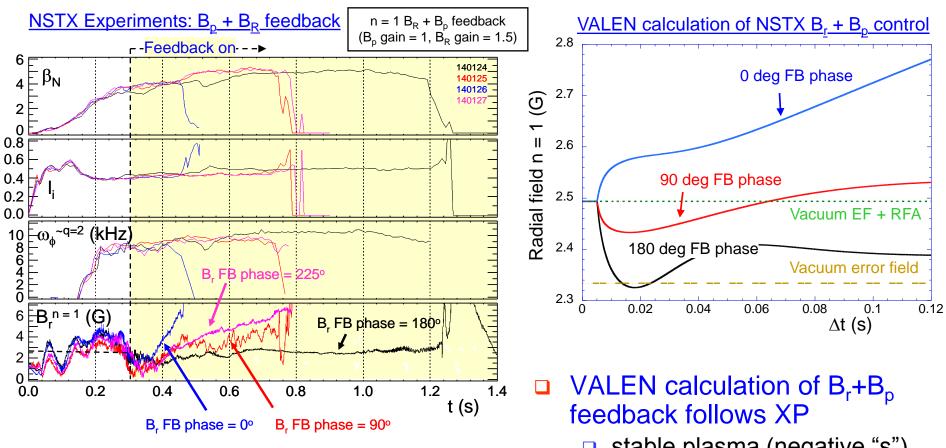
XP: RWM PID control optimization based on theory and experiment – Sabbagh, et al.

Motivation

- Experiments using n = 1 RWM control in 2010, and subsequent analysis using the VALEN code show that some settings for control using dual B_R and B_p sensor feedback were optimal, others could have been improved
- Active RWM PID control settings need to be re-optimized for NSTX-U
- Support general NSTX-U experiments by optimizing RWM PID control

Goals / Approach

Optimize n = 1 RWM PID control focusing on scans of key parameters


- Vary B_p feedback phase, B_R feedback gain which differ in the most in the analysis from the experimental settings
- B_p sensor gain will also be examined in this experiment (never scanned with r/t AC compensation).
- Perform on high performance target plasmas (fiducial; low l_i; snowflake)

Addresses

- General support for NSTX-U high beta experiments, R(15-3), JRT-16
- ITPA joint experiment MDC-17

Request: 0.5 – 1.0 run days (depends on desired targets, number of parameter variations/shot)

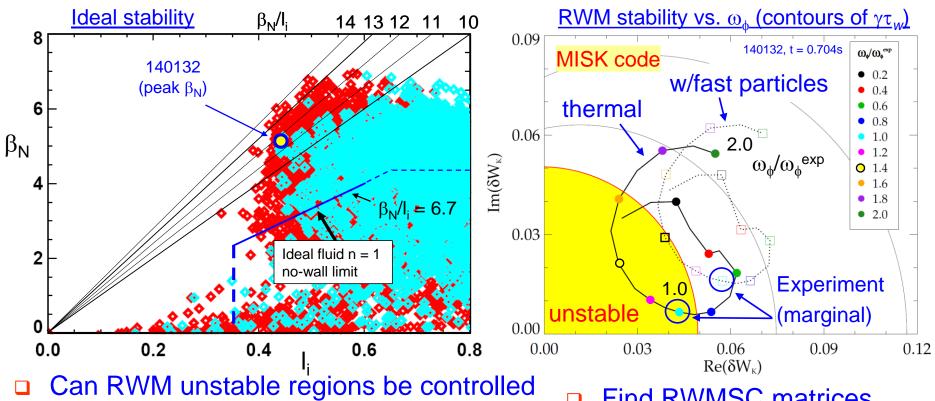
RWM B_r sensor n = 1 feedback phase variation shows superior settings when combined w/ B_p sensors; good agreement w/theory so far

- Favorable (experimental) B_p feedback settings, varied B_R settings
 - Positive/negative feedback produced at theoretically expected phase values

- stable plasma (negative "s")
- Now examining plasma response model variation
 - impact of "s", and diff. rotation ("α") on results

XP: RWM state space active control at reduced plasma rotation – Y.S. Park, et al.

Motivation


Present theory shows ITER advanced scenario plasmas are kinetic RWM unstable just above the n = 1 no wall limit, and alpha particle stabilization is required; Amount of kinetic resonance stabilization at low rotation is uncertain

Goals / Approach

- Demonstrate RWM control over a greater range of plasma rotation using RWM state space control (incl. (i) low ω_{ϕ} , (ii) intermediate ω_{ϕ} at marginal stability)
- Determine control physics differences of varying input eigenfunction set (including allowance of n > 1 eigenfunctions) at various ω_φ
- Vary key controller parameters to examine influence on stability
- Test compatibility with applied fields for NTV rotation damping
 - Ensure controller doesn't reduce n = 2, n = 3 braking field significantly
- **Examine influence of adding n = 1 \text{ RWM PID control using } B_r \text{ sensors}**

- NSTX Research Milestones R(15-3)
- ITPA joint experiment MDC-17, MDC-21

Kinetic stability calculations show reduced stability in low I_i target plasma as ω_{ϕ} is reduced; also at low ω_{ϕ}

using the RWMSC, including low rotation?

- Ideal stability analysis shows high margin over no-wall limit
 - RWM stabilization by kinetic effects large
- **D** MISK: RWM marginal stability at various ω_{ϕ}
 - Demonstrate control in these regions!

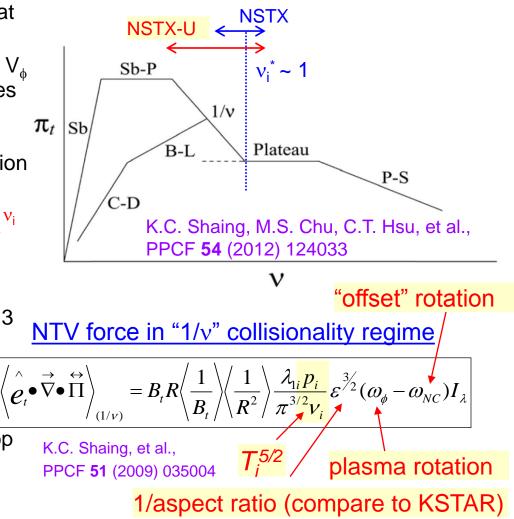
Find RWMSC matrices most effective for control

- Includes n > 1 control, variation of eigenfunctions used in controller, etc.
- Request: 1 run day

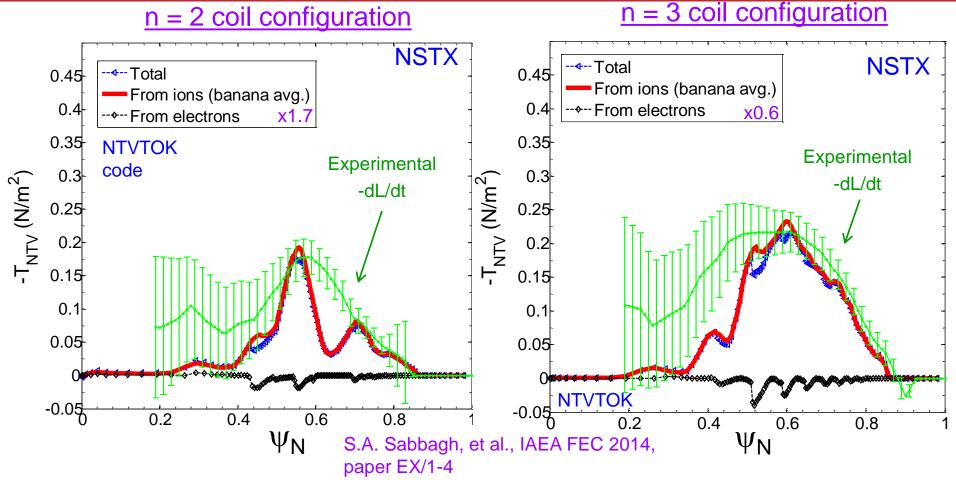
XP: Neoclassical toroidal viscosity at reduced collisionality (independent coil control) – Sabbagh, et al.

Motivation

- Experimentally, the dependence of neoclassical toroidal viscosity (NTV) at low collisionality is not well known
- Understanding important for NSTX-U V_φ control, other tokamaks, future devices

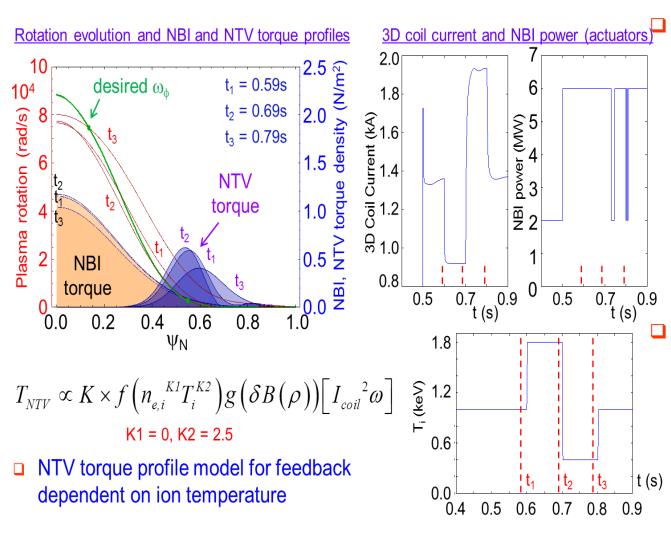

Goals / Approach

- Examine the dependence of NTV on ion collisionality
 - expected to increase with decreasing v_i from present experiments, and theory
- Determine if superbanana plateau increase of NTV depends on v_i
- Operate with pre-programmed n = 2, 3 applied fields for V₆ feedback control testing at reduced v_i


Addresses

- NSTX Milestones R(15-3), closed-loop rotation control with 3D fields
- ITPA joint experiment MDC-21

<u>NTV strength varies with plasma</u> <u>collisionality</u> ν, δB², rotation


Measured NTV torque density profiles quantitatively compare well to computed T_{NTV} – NTVTOK code interfaced to NSTX-U

Scale factor $((dL/dt)/T_{NTV}) = 1.7$ and 0.6 (for cases shown above) – O(1) agreement

- Comparison to full Shaing, et al. theory with NTVTOK code (applicable for all collisionality (as shown above) is possible to compute between shots for NSTX-U
- Comparisons will also be made to other NTV codes (e.g. by J-K. Park, K. Kim, Z. Wang)

NTV experiment at reduced v is a key step for closed-loop V_{ϕ} feedback using 3D fields in NSTX-U

- I. Goumiri (PU), S.A. Sabbagh (Columbia U.), D.A. Gates (PPPL)
- S.A. Sabbagh, et al., IAEA FEC 2014, paper EX/1-4

Expect stronger NTV torque at higher T_i $(-d\omega_{\phi}/dt \sim T_i^{5/2} \omega_{\phi})$

 Initially shown in NSTX

S.A. Sabbagh, et al, NF **50** (2010) 025020

Shown in our recent KSTAR XPs

Y.S. Park, et al, IAEA FEC 2014, paper EX/P8-05

Present XP

- Operate with larger change in v_i
- Attempt to reach quasi-steady-state ω_φ for each ν_i
- Use braking fields envisioned for V₆ FB

Request: 1 run day

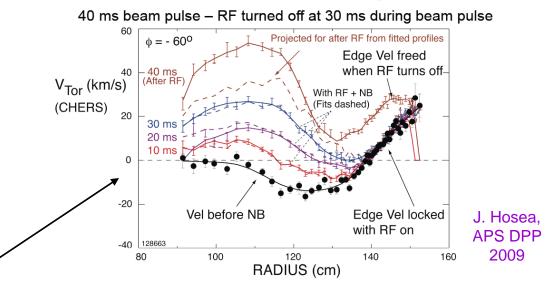
XP: NTV steady-state offset velocity at reduced torque with HHFW – Sabbagh, et al.

Motivation

- Measure and understand neoclassical toroidal viscosity (NTV) steady-state offset velocity physics to gain confidence in extrapolation of the effect to future devices
 - Background: NSTX low ω_{ϕ} NTV experiments with co-NBI + non-resonant magnetic braking do not show NTV steady-state offset velocity to be in the counter-I_p direction (e.g., shown in DIII-D (Garofalo, PRL 2008), claimed consistent with theory)

Goals

- □ Complete XP1062, partially run in 2010 (**but excluded HHFW portion of shot list**)
- Determine NTV offset rotation in plasmas with no, varied NBI torque (HHFW heated)
 - Use demonstrated technique to measure ω_{ϕ} in RF plasmas
 - Use n = 3 applied field, compare to results with n = 2 applied field configuration
- Demonstrate for the first time NTV with strong electron component
- □ Key code validation in new regime: for the NTVTOK code, and other NTV codes
- Determine if low ω_{ϕ} (low ω_{E} superbanana plateau (SBP) regime) can be reproduced during the NBI portion of these discharges with non-resonant braking
 - Can attempt to measure NTV steady state offset velocity this way as well when varying nonresonant applied field magnitude

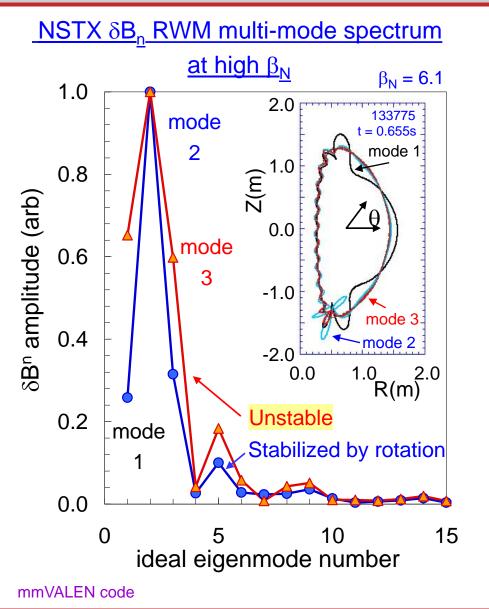

- NSTX Milestone R(15-3)
- Desire to understand potential sources of momentum input for ITER

Zero input torque ω_{ϕ} profile diagnosed in 2009 RF XPs

Determine NTV offset rotation – RF approach

- Generate ω_φ with RF at highest T_i, W_{tot} possible, diagnose similar to Hosea/Podesta 2009
- Repeat for different *initial* values of n = 3 (and/or 2) field, determine if pre-NBI ω_φ changes
- Note that if NTV offset is indeed only in counter-I_p direction, the ω_φ profile will change (it's presently counter in core, co at the edge
- Attempt to maintain nearzero ω_{ϕ} during NBI phase
 - New way to enter/sustain low ω_E SBP regime

- Mechanism causing this edge effect not understood, but may point to edge ion loss
- RF apparently provides a drag on core plasma rotation as well
- □ Since SBP regime yields maximum NTV
 - □ Entering it by lowering ω_{ϕ} yielded an observed increase in NTV without mode locking (2009-10)
 - Conversely, attempt to measure decrease in NTV as SBP regime is exited
- Request: 0.5 1.0 run days (depends on goals, and leveraging RF+NBI development)


XP: Multi-mode error field correction with the RWM state-space controller (RWMSC) – Sabbagh, et al.

Motivation

- Produce multi-mode error field correction for the first time using the inherent capability of the RWMSC to include multiple modes (different n; different poloidal spectra)
- High interest for ITER and other tokamaks
- Goals / Approach
 - **Demonstrate reduction of applied** n = 1, 2, 3 **error fields**
 - Test the need for matching n values between applied field and modes
 - Test the influence of wall states in the error field reduction effectiveness
 - Demonstrate reduction of NSTX-U intrinsic error fields
 - Use "best" set of RWMSC control matrices determined from above step (including n > 1, and sufficient number of wall states)
 - **Demonstrate reduction of dynamic error fields (at higher** β_N **)**
 - Determine if increase of plasma permeability is required in control model for best performance at increased β_N

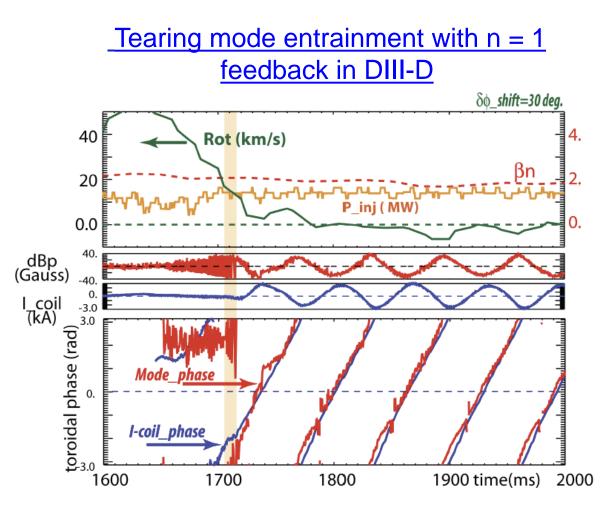
- Milestone R(15-3), JRT-16
- ITPA joint experiment MDC-17, MDC-19, MDC-21

Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N (vs. 1^{st} eigenmode dominant at lower β_N)

- Multi-mode error field correction experiment differs from RWM active control experiments
 - Theoretically, the multi-mode spectrum is simplified away from RWM marginal stabilty points
 - Are different control matrices needed for the best error field correction compared to RWM control at marginal stability?
 - Compare effect on RWM PID and RWMSC for error field correction
 - PID should be more subject to failure by n > 1 mode content, error in tracking toroidal phase
 - State space controller with n > 1 eigenfunctions and wall effects is expected to provide greater EFC

Request: 1 run day (should run after PID EFC experiment (by C. Myers))

Motivation


NTM "entrainment", in which tearing modes are partially controlled to avoid locking, can be used for disruption avoidance (or at least in conjunction with controlled shutdown)

Goals / Approach

- Attempt entrainment for the first time on NSTX-U with a somewhat novel technique
 - Slow NTM (attempt both 3/1, and 2/1 modes) using non-resonant NTV (n = 3) to slow the plasma
 - With NTM slowed to near, or below the critical rotation speed for mode locking, apply an n = 1 AC field to attempt to keep the NTM rotating at low frequency ~ 50Hz (far slower speed than the critical mode rotation speed for locking)
 - Attempt to use n = 1 "slow" feedback with a phase that sustains the n = 1 mode rotation to avoid mode lock

- □ NSTX-U Milestones R(15-3), JRT-16
- □ ITPA joint experiment MDC-8, MDC-17, MDC-22

Present entrainment experiment would be similar (could be compared to) past DIII-D experiments

- Will entrainment be different at varied aspect ratio, higher edge q shear?
 - DIII-D / NSTX-U comparison
 - Also NSTX-U / KSTAR (A = 3.5) comparison (we will propose XP on KSTAR in 2015)
- A key motivation for NSTX-U is disruption avoidance by mode locking avoidance

Request: 0.5 – 1.0 run days

M. Okabayashi, et al., ITPA MHD Stability meeting, April, 2013

Piggyback XP: Disruption PAM (DPAM) Characterization, Measurements, and Criteria - Sabbagh, for the DPAM WG

Motivation

Serve NSTX-U DPAM Working group main goal: Satisfy gaps in understanding prediction, avoidance, and mitigation of disruptions in tokamaks, applying this knowledge to move toward acceptable levels of disruption frequency/severity using quantified metrics

Goals / Approach

Initial discussion held at first DPAM Working Group meeting

(see http://nstx.pppl.gov/DragNDrop/Working_Groups/DPAM/2015)

- Start early in NSTX-U operation to
 - Characterize NSTX-U disruptions (similar to P. deVries, et al. approach taken on JET)
 - Quantify results with measurements (similar to S. Gerhardt, et al. pioneering work on NSTX)
 - Expand disruption determination/avoidance models as stated in NSTX-U 5 Year Plan
- Tools are presently being developed for this purpose
- Analysis will be conducted/communicated to/by NSTX-U DPAM WG meetings, planned as a multi-year effort
- This step is expected to be conducted in piggyback NO RUN TIME request

- □ NSTX-U Milestones: R(15-3), JRT-16, NSTX-U DPAM WG charges
- □ ITPA joint experiment MDC-21, MDC-22

Example of disruption physics elements interconnected to describe paths toward disruption

Elements

Provide a logical and quantifiable set of components in the disruption chain, with underlying physics

Connections

- Shows interrelations of the elements, arrow thickness showing relative probability of path
- Can have multiple inputs / outputs

Example: Disruption Elements and Connections

P.C. de Vries *et al.*, Nucl. Fusion **51**, 053018 (2011)

LOQ

Supporting slides follow

(Incomplete) List of physics elements tied to disruption prediction, avoidance (individual involvement) – 1/30/15 mtg

	Impurity control (NC)	Abbreviations:
	bolometry-triggered shutdown (SPG); "tailoring" radiation-induced TM onset (LD, DG)	JWB: Jack Berkery
	change plasma operational state / excite ELMs, etc. (TBD – perhaps JC)	AB: Amitava Bhattacharjee
	Greenwald limit (GWL)	DB: Devon Battaglia
	density/power feedback, etc. (DB)	MDB: Dan Boyer
	Locked TM (LTM)	JC: John Canik
	TM onset and stabilization conditions, locking thresholds (JKP,RLH,ZW)	LD: Luis Delgado-Aparicio
	TM entrainment (YSP)	DG: Dave Gates
	Error Field Correction (ÉFC)	SPG: Stefan Gerhardt
_	 NSTX-U EF assessment and correction optimization (CM,SPG) 	MJ: Mike Jaworski
	NSTX-U EF multi-mode correction (SAS, YSP, EK)	EK: Egemen Kolemen
	Current ramp-up (IPR)	RLH: Rob La Haye
	 Active aux. power / CD alteration to change q (MDB, SPG) 	JEM: Jon Menard
		CM: Clayton Myers
	Shape control issues (SC)	JKP: Jong-Kyu Park
	 Active alteration of squareness, triangularity, elongation – RFA sensor (SPG,MDB) 	YSP: Young-Seok Park
	Transport barrier formation (ITB)	RR: Roger Raman
	• Active global parameter, V_{ϕ} , etc. alteration techniques (SAS,JWB,EK)	SAS: Steve Sabbagh
	H-L mode back-transition (HLB)	KT: Kevin Tritz
	Active global parameter, V_{ϕ} , etc. alteration techniques (SAS,JWB,EK)	ZW: Zhirui Wang
	Approaching vertical instability (VSC)	TBD: (To be decided)
	Plasma shape change, etc. (SPG, MDB)	
	Resistive wall mode (RWM)	Interest from Theory
	\Box Active global parameter, V _b , etc. alteration techniques (SAS,JWB)	Amitava
	 Active multi-mode control (SAS,YSP,KT) 	
	Ideal wall mode (IWM)	Bhattacharjee, Allen
	\Box Active global parameter, V ₆ , etc. alteration techniques (JEM)	Boozer, Dylan
	Internal kink/Ballooning mode (IKB)	Brennan, Bill Tang
-	• Active global parameter, V_{ϕ} , etc. alteration techniques (SAS,JWB)	have requested
	$\square \text{Active global parameter, } v_{\phi}, \text{ etc. alteration techniques (SAS, 5WB)}$ $\square \text{Active multi-mode control (SAS, YSP, KT)}$	involvement