Behaviour of High-Z Impurities in NSTX-U

M.L. Reinke
UNIVERSITY of York

L. Delgado-Aparicio (PPPL), K. Tritz (JHU)

BACKGROUND:

- transport of high-Z impurities at low aspect ratio has not been thoroughly investigated
- open questions for NSTX-U high-Z PFC selection and future scenario and diagnostic planning/optimization

GOAL: gain 0th order knowledge of high-Z impurity impact through Kr and Xe gas puffing

Experimental Approach

- establish NBI-heated ELMy H-mode scenario and seed with varying levels of Kr (Z=36) and Xe (Z=54) [separately]
 - recycling impurity, fueling location irrelevant
 - low: non-perturbing, contamination only seen on spectroscopy
 - med: radiation perturbations, weak non-linear effects (ELM freq.)
 - high: strong non-linear effects (T_e profile, MHD, disruption)
- would like to have HHFW available (modulate in above shots)
 - sustain high-T_e, (offset radiation) prevent non-linear regime?
 - examine impact of wave heating on core and boundary transport
 - wave heating impacts edge recycling based on qualitative behavior of argon in C-Mod w/ LHRF and ICRF
- analyze 0D level via spectroscopy, AXUV diodes, ME-SXR

Experimental Approach

- establish NBI-heated ELMy H-mode scenario and seed with varying levels of Kr (Z=36) and Xe (Z=54) [separately]
 - recycling impurity, fueling location irrelevant
 - low: non-perturbing, contamination only seen on spectroscopy
 - med: radiation perturbations, weak non-linear effects (ELM freq.)
 - high: strong non-linear effects (T_e profile, MHD, disruption)
- proceed responsibly through high-Z seeding strategy
 - judge impact of retention at low seeding levels
 - metal machines ~ 1/10th retention of recycling gas shot-to-shot
 - schedule time for 'clean-up shots' (between Kr/Xe and other XPs)
 - consider in wider experimental scheduling w/r/t BZN, Li, etc.

Expected Contributions

help inform high-Z PFC selection (TZM vs. W)

- is behavior of Kr and Xe significantly different indicating Mo
 (Z=42) PFCs would not be a good proxy for W (Z=74)?
 - is this expected based on achieved q/m, T_e-radiation physics?

begin development of high-Z mitigation strategy

- are NSTX-U H-modes sensitive to on-axis core accumulation?
- if so, does HHFW provide means to mitigate this?

contribute to future diagnostic design

- can the existing diagnostic set manage with the 2D n_z variation?
- (expected) insufficiency of AXUV diodes for power balance
- provide critical impurity levels as input for future diagnostic design focused on quantitative core transport studies