

Supported by

OAK RIDGE National Laboratory

DivSOL XP Proposals

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** Old Dominion ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington U Wisconsin X Science LLC

TK Gray and Various Co-authors

NSTX-U Research Forum — DivSOL Princeton, NJ 2-25-2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAFA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

- Heat flux and SOL width Scaling in NSTX-U
- Relaxation of the interchange instability and effect on SOL width with Li wall conditioning
- Relationship between lambda_q, S and Connection Length
- Effect of Lithium on SOL Power Balance

Heat flux and SOL width Scaling in NSTX-U

Motivation

- Previous scaling studies predicted for NSTX-U:
 - $\lambda_q \sim 3 \text{ mm} (\text{boronized})$
 - q_{peak} ~ 24 MW/m²
 - Assumed DN operation and $f_{rad} \sim 0.5$, $I_p = 2$ MA, $P_{NBI} = 12$ MW
 - Milestone 15-1

Goal: Extend scaling study to increased NSTX-U parameters in LSN as well as DN discharges with and without Li

Heat flux and SOL width Scaling in NSTX-U — Run Plan

- Boronized Wall Conditions (1 run day)
 - Ip Scan @ Bt = 0.5 T and 2 P_{NBI} (4 and 8 MW)
 - Lower Single-null and double-null
 - high δ
- Repeat Ip Scan with several Li deposition amounts (1 run day)
 - 2 P_{NBI} @ 4 and 8 MW
 - Pre-discharge evaporation: 50 500 mg
- Also interested in similar scan in low δ shape \ldots

Relaxation of the interchange instability and effect on SOL width with Li wall conditioning

Co-authors: S. Zweben, M Jaworski, J. Myra, D. Russell, D Smith, A Diallo Motivation:

- The addition of Li wall conditioning has been observed to reduce SOL width
- Recent simulations from SOLT (D. Russell, Lodestar) suggest a relaxation of the pedestal VP with Li reduces the interchange drive therefore reducing λq

Goal: Determine if a reduction in the interchange drive is the cause of SOL width contraction with Li

Relaxation of the interchange instability and effect on SOL width with Li wall conditioning — Run Plan

- Establish a baseline discharge with minimal Li (~10-50 mg)
 - Utilize knowledge gained from original Li Introduction to maintain constant CS fueling and PNBI through out discharges
- Field align GPI flux tubes with divertor probes to measure SOL turbulence (low δ shape) [O. Grulke, NF 2014]
 - Plus BES, reflectometry, etc
 - Run fast IR camera <u>w/o dual-band optics</u> and run at ~ 6 kHz for turbulence measurements
- Re-introduce Li to suppress interchange drive
- Reduce Li and see if interchange drive is re-established
- 1 run day requested

Relationship between lambda_q, S and Connection Length

Wariation of mean power spreading factor Stand S/A for the various devices

Relationship between lambda_q, S and Connection Length

Co-authors: J-W Ahn, J Canik, K Gan

Motivation

- NSTX data contained in the 2010 JRT multi-machine database contains a roughly linear dependence between S and λ_q
- Not seen in any other tokamak
- The reason: NSTX data also contained a shape scan!
- This suggests a link between SOLPS modeling will be necessary to unfold the interdependences between S, λ_q and L_{II}

Goal: Study the relationship between S and λ_q and $L_{||}$ via a δ scan under boronized conditions (1 run day)

Effect of Lithium on SOL Power Balance

Goal: First systematic study of how Li effects the SOL power balance at the outer strike point

NSTX-U

Effect of Lithium on SOL Power Balance — Run Plan

R15-1

R15-1

- Boronized P_{NBI} and CS fueling scans (~ 1 run day)
 - Provide a baseline for comparison with Li discharges
 - high δ, high I_p (≥ 1 MA)
- Controlled Li Introduction into NSTX-U [XP proposed by R. Maingi]
 - First time with the dual-band IR optics!
 - Expect increases to fueling during Li introduction and reduction in beam power due to β_N limits
 - Let the Li coating "burn-out" after this initial introduction
 - Repeat Li introduction in low δ shape
- P_{NBI} scan with several Li deposition amounts (1-2 run days)
 150 and 300 mg
 - high δ , high I_p ($\geq 1 \text{ MA}$)
 - Repeat P_{NBI} Scan after an end-of-run Boronization? (1 day)