

Supported by

DivSOL TSG experimental proposals

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Vlad Soukhanovskii

and the NSTX Research Team

NSTX-U FY2015 Research Forum Princeton, NJ 24 February 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

1. Initial NSTX-U edge characterization

- Goals:
 - provide input to R15-1 and R15-3 and initial development for R16-1 and R16-2
 - Enable divertor and SOL characterization under boronized and lithiated conditions
 - enable dedicated XP development after 2 months
- Boundary conditions
 - P_{NBI} = 1-6 MW and 6-12 MW ; I_p = 0.7-1 MA and 1-1.4 MA; n_e = (0.5 0.8) x n_G
 - Boronized, Lithium coatings 10-100 mg
 - Shaping (high triangularity vs low triangularity) and magnetic balance (LSN vs DN)
- Deliverables
 - Divertor peak heat flux scaling and initial assessment of power balance, in-out assym.
 - Initial assessment of SOL power width scaling (I_p , S, L_{II} , ...)
 - Initial assessment of SOL and divertor turbulence
 - ELM type identification and ELM regimes, ELM heat fluxes and profiles

2. Radiative divertor experiments

- Assess radiative divertor operating space and heat flux mitigation in high delta shape with D₂, CD₄, N (?), Ne, Ar seeding
- Assess impurity radiation, recombination, and heat flux toroidal asymmetries with wide angle cameras
- Assess pedestal temperature degradation due to seeding
- At best seeded impurity gas and rate, assess partial detachment threshold and radial extend vs SOL power width (e.g. change I_p).
- The experiment should prepare the basis for
 - Detachment modeling with UEDGE
 - Radiative divertor optimization with highest NBI input power, high noninductive current fraction scenarios in FY16-17
 - Milestone R(16-1)
 - Radiative divertor feedback control with several new divertor diagnostics (Divertor Control Camera, Divertor Control Spectrometer, Divertor SPRED, LADA, etc)

3. Clarifying Snowflake divertor configuration physics

- 1. Transport in the snowflake divertor
 - Obtain heat flux profiles for SOL power width analysis at different I_p to enable direct comparison of snowflake vs standard divertor
 - Use GPI, BES and fast divertor cameras to document turbulence and modes in the null-region
 - Measure heat and particle flux sharing fractions between strike points, inter-ELM and ELM
- 2. Radiative snowflake divertor limits
 - Increase divertor radiation via D₂ or impurity seeding
 - Document heat flux, radiated power and impurity radiation distribution distributio
- 3. Optimize pedestal placement w.r.t. MPTS and document pedestal profiles for pedestal structure analysis and linear MHD stability calculations.
- 4. Finer snowflake experiments, e.g. understand impact of lithium pumping, snowflake with cryopump, enhanced divertor ion loss, churning mode characterization, snowflake + 3D fields, etc

4. Boundary diagnostic-optimized configuration (BDOC) for model validation

- Run discharge periodically to accumulate database
 - Neutrals for cryopump
 - Recycling coefficients with boron and lithium
 - Multi-impurity erosion, redeposition and migration (Li, B, C, O, High-Z)
- Enable comparisons to and complementarity of various transport and PSI models
 - UEDGE, SOLPS, OEDGE, BOUT++, XGC
 - DEGAS 2, ERO, DIVIMP, TRIM, WallDyn, MD
- Two shapes: high triangularity and low triangularity (high-Z tile)
- Highly reproducible parameters: e.g., 4 MW, 0.8-1.0 MA, medium density, calibrated LFS fueling, probably H-mode, etc
- All core profiles, all divertor and SOL diagnostics
- Examples of what this approach may yield for DivSOL TSG
 - Baseline case for SOL cross-field transport and turbulence models
 - Radial and parallel SOL impurity transport and ionization source
 - Divertor radiation models

5. Transport and radiation in the high flux expansion divertor configuration with cusp-like fields (H. Takase JPSJ 70, 609 (2001))

- Motivation
 - Many interesting advanced divertor ideas since 1970-s

http://fire.pppl.gov/APS-DPP14_Divertor_Soukhanovskii.pdf

- Partial detachment onset in NSTX high-flux expansion divertors (snowflake-minus and standard (EPS 2009, APS 2010))
- Cusp-like field divertor enables studies
 - impact of flux expansion in the standard divertor on neutral and impurity radiation distribution, detachment onset, radiation limits
 - heat transport models and turbulence
- Cusp-like field divertor is possible in NSTX-U with 3 divertor coils
- Experimental scans: I_p , P_{NBI} , gas seeding rate

