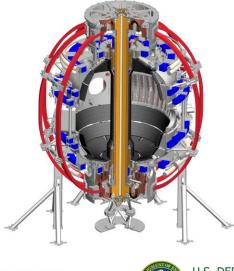
Intrinsic impurity transport in NBI-heated H-mode discharges

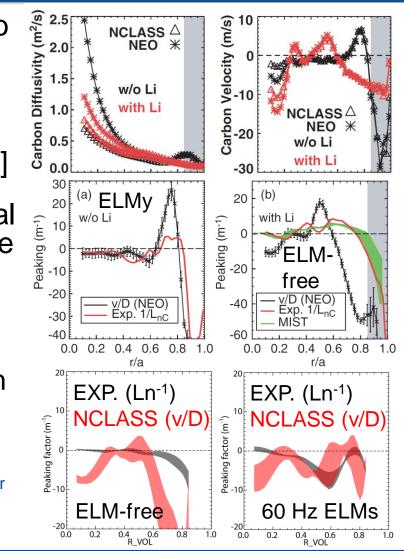
NSTX-U research forum – T&T February 2015


Lawrence Livermore National Laboratory Filippo Scotti

Office of

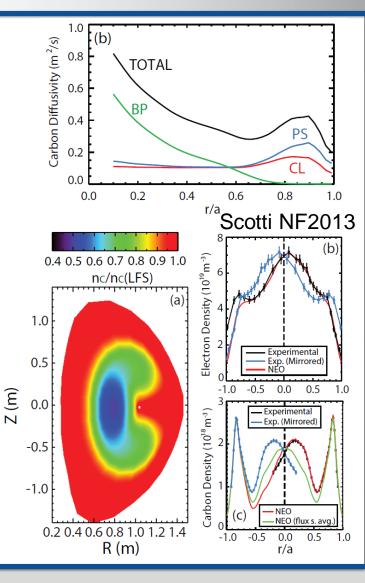
Science

MSTX Upgrade



LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences.. Lawrence Livermore National Security, LLC


Intrinsic carbon transport close to neoclassical estimates in NSTX H-modes

- In NSTX thermal ion transport close to neoclassical levels [Kaye, NF 2008]
- Carbon transport consistent with neoclassical estimates in ELMy, boronized discharges [Scotti NF 2013]
- With Li changes in carbon neoclassical convection (NCLASS, NEO) and some disagreement between exp. profiles and neoclassical at top of pedestal
- Indications of agreement with neoclassical transport predictions with lithium + triggered ELMs
 - Similar to naturally ELMy discharges
 - Both cases have similar changes in T_i, v_{tor} profiles wrt to ELM-free

Understand C transport crucial for part. control, medium/high-Z perturb. transport won't inform about C

- Carbon in BP in the core, PS at edge
 - High-Z deep PS regime
- Importance of toroidal rotation effects
 - Poloidal asymmetries observed for C and in agreement with NEO, higher for high mass
 - Neoclassical diffusivity enhancement
 - Already up to 3x for C (r/a<0.4), higher for higher mass
- Importance of multi-impurity effects for extrinsic impurities
 - 3% of carbon doubles neoclassical diffusivity of additional impurity

Characterize carbon transport, consistency with neoclass. at higher B_T -Ip, carbon balance

- Goal: characterize intrinsic C transport (<u>Piggy-back</u>):
 - Comparison with neoclassical estimates (NEO, GTC-NEO) for impurity peaking
 - Both boronized and lithiated discharges
 - Piggy-back on B_T, Ip scan by T&T, lithium introduction XP by PC-TF
- Transition to higher B and lower collisionality will probe if carbon transport still ~ neoclassical
- Testing RMP ELM perturbation to infer absolute D, v [Scotti, APS2014], momentum diffusivities + off diagonal terms [Walter]
- Additional requirements:
 - Nothing perturbing CHERS: <u>NO</u> NBI beam 2, <u>NO</u> GPI
 - Possibly consider triggered ELMs at end of shots?
- Global inventory / impurity confinement scaling with eng. parameters
- Attempt at intrinsic impurity balance with improved spectroscopic coverage for impurity sources (benefit from ELM-free discharges)

