Impact of 3D Radial Field Perturbations on Turbulence, Transport and ELMs in the ST

G. McKee, D. Smith, R. Fonck, *U. Wisconsin*

Motivation: Application of Resonant Magnetic Perturbation (RMP) can suppress ELMs

- ELM-free operation for many au_{E}
- Pedestal relaxes from Peeling-Ballooning boundary
- 3D coils being installed in ITER for ELM suppression
- ELMs destabilized in previous NSTX exp. (Canik)
- Physical mechanisms not fully understood
 - Interplay of equilibrium, stability, rotation, turbulence, transport

Background

- RMP fields observed to significantly increase low-k density turbulence in DIII-D over $0.5 < \rho < 1$
 - Local response near pedestal is "rapid" (~ ms)
- Transport: Density "pump-out", rotation/Er changes
- May play a critical role in ELM-suppression by: increasing transport, reducing gradients, stabilize P-B
- Theoretical mechanisms proposed: T. Bird, M. Leconte

Impact of 3D Radial Field Perturbations on Turbulence, Transport and ELMs in the ST

Experiment plan

- Develop "standard" ELM'ing H-mode
- Apply mid plane n=3 magnetic field
 - Coil current scan
 - Different configuration from DIII-D, non-resonant
- Vary q_{95} via I_P scan at constant B_T (0.75 T)
- Boronized conditions?
- Obtain fluctuations measurements with BES, high-k scattering, GPI, Corr. Refl.
- Future: if NCC deployed, compare resonant/non-resonant field effects

Similar conditions to those proposed by J. Lore for pedestal experiment

