

Perturbative particle transport experiment with SGI in NSTX-U L and H-mode plasmas

Coll of Wm & Mary Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics Old Dominion ORNL PPPL** Princeton U Purdue U

SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA **UCSD U** Colorado **U Illinois**

U Maryland

U Rochester

U Tennessee

U Washington

X Science LLC

U Wisconsin

U Tulsa

Y. Ren¹

W. Guttenfelder¹, S.M. Kaye¹, A. Diallo¹, S. Kubota², J. Lang¹, B.P. LeBlanc¹, R.E. Bell¹, V. Soukhanovskii³, D.R. Smith⁴, W. Wang¹, H. Yuh⁵

1. PPPL, 2. UCLA, 3.LLNL, 4. UW-Madison, 5. Nova **Photonics**

> **NSTX-U Research Forum February 25th, 2015**

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich

IPP, Garching

ASCR, Czech Rep

Background and Motivations

- Particle transport in STs not well understood
 - Neoclassical or turbulent?
 - Particle balance analysis not able to separate diffusion and pinch
- Perturbative particle transport measurement used on other tokamaks
 - Use fast gas injection system coupled with profile reflectometer or Thomson scattering for density measurement

Experimental Plan

- Produce desired baseline plasma target: long-pulse MHDquiescent NBI-heated L-mode plasmas (similar to shot 141716)
 - Pretty reproducible plasmas
 - Small MHD activities
 - MSE and CHERS measurements available
- Develop optimal SGI duty cycle, modulation cycle and density perturbation (should not cut into experimental time)
 - Large density modulation cycle >> 16 ms (MPTS time resolution)
 - Moderate density perturbation
 - Avoid density accumulation
- B_T and I_P scan to change neoclassical/turbulent transport
 - 2nd NBI may be used to change flow shear
- If time permitted, carry out experiments with 3D fields and in Hmode plasmas
- One run day is needed and 0.5 day is minimum

Diagnostic Needs and Analysis

- Must-have diagnostics:
 - SGI
 - BES, reflectometer
 - CHERS, MPTS, MSE
 - Magnetics
 - other diagnostics required for conducting TRANSP analysis
- Planned analysis
 - LRDFIT, TRANSP, GS2, GYRO, GTS, XGC1

Office of Science

Validation of gyrokinetic codes in NSTX-U NBIheated L-mode plasmas

Coll of Wm & Mary Columbia U CompX

General Atomics FIU

INL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Lehigh U

Nova Photonics

Old Dominion

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Davis

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Y. Ren¹

W. Guttenfelder¹, S.M. Kaye¹, A. Diallo¹, S. Kubota², J. Lang¹, B.P. LeBlanc¹, R.E. Bell¹, V. Soukhanovskii³,

D.R. Smith⁴, W. Wang¹, H. Yuh⁵

1. PPPL, 2. UCLA, 3.LLNL, 4. UW-Madison, 5. Nova Photonics

NSTX-U Research Forum February 25th, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich

IPP, Garching

ASCR, Czech Rep

Background and Motivations

- Validating gyrokinetic codes is important
 - To find limitations and improve codes
 - Compare transport level between experiments and nonlinear gyrokinetic simulations
 - Compare fluctuations through synthetic diagnostics
- L-mode plasmas offer some favorable properties to code validation
 - Easier to obtain stationary profiles
 - Easier to maintain MHD quiescence
 - No complications from edge transport barrier
- Will provide a data base for developing reduced transport models, e.g. TGLF, for NSTX-U parameter regimes.

Experimental Plan

- Produce desired baseline plasma target: MHD-quiescent NBI-heated L-mode plasmas (similar to shot 141716)
 - Pretty reproducible plasmas
 - Small MHD activities
 - MSE and CHERS measurements available
- B_T and I_P scan to change neoclassical/turbulent transport
- Change plasma shaping, e.g. elongation, to assess its effects on turbulence and transport if time permits
- If time permitted, carry out experiments with 3D fields and in H-mode plasmas
- One run day is needed and 0.5 day is minimum
 - If long-pulse MHD-quiescent quasi-stationary NBI-heated L-mode achieved earlier, may be able to share shots with perturbative particle transport XP because of similar B_T and I_D scans

Diagnostic Needs and Analysis

- Must-have diagnostics:
 - BES, reflectometer
 - CHERS, MPTS, MSE
 - Magnetics
 - other diagnostics required for conducting TRANSP analysis
- Planned analysis
 - LRDFIT, TRANSP, GS2, GYRO, GTS, XGC1

Investigate effects of q profile on transport and turbulence in NSTX-U H-mode plasmas

Coll of Wm & Mary Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL

Lodestar MIT Lehigh U

Nova Photonics
Old Dominion

ORNL PPPL

Princeton U

Purdue U SNL

Think Tank, Inc.

UC Davis
UC Irvine

UCLA

UCSD

U Colorado

U Illinois U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Y. Ren¹

W. Guttenfelder¹, S.M. Kaye¹, A. Diallo¹, S. Kubota², J. Lang¹, B.P. LeBlanc¹, R.E. Bell¹, D.R. Smith³, W. Wang¹, H. Yuh⁴

1. PPPL, 2. UCLA, 3. UW-Madison, 4. Nova Photonics

NSTX-U Research Forum February 25th, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching

ASCR, Czech Rep

Background and Motivations

- q profile affects tokamak stability and confinement
 - Forming ITB due to reversed magnetic shear (Yuh et al, PRL, 2011)
 - Improving confinement in hybrid scenario characterized by a broad region of low magnetic shear (Gormezano et al, NF, 2007)
- Theoretical analysis shows s/q plays an important role in q profile effects on confinement in conventional tokamaks (Citrin et al, PPCF,2012)
 - ITG linear threshold has s/q dependence: $(R/L_{Ti})_{crit} = 2(1.1 + 1.4s + 1.9s/q)$
- For ST H-mode plasmas, ETG and micro-tearing modes may be more important
 - ETG linear threshold also has s/q dependence, similar to ITG
 - Micro-tearing modes have different s/q dependence than ETG and ITG
 - q profile effects can be used to identify operational modes
- Support JRT-15, R(15-1)
- Will provide a data base for developing reduced transport models, e.g. TGLF, for NSTX-U parameter regimes

Experimental Plan

- Achieve decent MHD-quiescent H-mode plasmas
- Different B_T and I_P combinations to change q profile with fixed NBI sources
 - Can share shots with cross-TSG B_T and I_P scan campaign
- For fixed q₉₅, use different combinations of NBI sources to modify q profile
 - Constant q_{min} and different q_{min}
- For different q₉₅ (B_T and I_P combinations), use NBI sources to keep q_{min} constant
- Try to use 3D field to decouple rotation profile from q profile
- One run day is needed and 0.5 day is minimum
 - Depends on the details of sharing shots with other XPs

Diagnostic Needs and Analysis

- Must-have diagnostics:
 - BES, reflectometer
 - CHERS, MPTS, MSE
 - Magnetics
 - other diagnostics required for conducting TRANSP analysis
- Planned analysis
 - LRDFIT, TRANSP, GS2, GYRO, GTS, XGC1