Intermittent filaments in NSTX

J. Boedo With

J'Ippolito, H. Kugel, R. Maqueda, R.
gi, J. Menard, J. Myra, L Roquemore,
/. Soukhanovskii, D. Rudakov, S.
>ben, C. Bush, K. C. Lee, S. Paul, C.
Skinner, D. Stotler, K. Williams

The UCSD and NSTX Teams

Probe Introduction

- General Information:
 - Located ~7" below midplane
 - 10 tips (1xIsat, 2xDP, 2xImach, 4xVf (Er, E_{θ})
 - Measures: Te, Ne (~3 ms), Isat, $2xE_r$, $2x E_\theta$, Mach #, V_{par} , Γ_r , V_r, etc)
 - Yet to be implemented (Fast Te, Ne, Bfluct)
 - Bandwidth ~ 4 MHz
 - DAQ Sampling 1MS/s
 - In/out time ~ 80 ms
- Recent Improvements:
 - New electronics (better S/N, shielded)
 - New shaft (lighter, better shielded)
 - >> Faster probe

Shape Reproducible

- Used LSN discharges
- L and H-mode (showing mostly L)

UC SanDiego

- Ptot~ 2 MW
- Bt~0.44 T
- Ip~800 kA
- W~ 0.07 MJ
- Rmidout~ 1.46 m
- Connection length varies
 rapidly across SOL

Radial Transport vs Density

 Probe plunges at various times during the discharge as density increases

UC San Diego

- Higher averaged density is obtained by increased initial gas puffing
- New Te-constrained EFIT crucial for edge work

TS profiles show pedestal/edge Ne varies in time

 Pedestal profile evolves with time as core Ne evolves

- SP profiles of pedestal/edge Ne, Te show significant change with average density.
 - SOL plateau at high Ne >> fast radial transport in SOL increasing w collisionality
 - Pedestal Ne increases
 - Pedestal Te drop > thermal catastrophe (D'ippolito, Myra)?

Isat rms Increases w Ne

- Isat rms peaks ~ @LCFS (high gradient)
- Drop of rms value INSIDE separatrix> Filament birth region
- Dependence on density apparent only at highest values
- Decay with R
- What does this mean microscopically?

Radial Velocity Decays w R

- $Vr = E_{\theta}/B_{T}$
- Bt~ 0.24 T
- Velocity drops with R >> Filaments slow down due to lower Te*

UCSanDiego

 Higher Vr at High Ne near LCFS >> Filaments are sheath-disconnected near LCFS at high Ne*

SPHERICA VDEDIMENT

^{*}D'Ippolito, Myra, et al.

Number of Events Dependent on Density

SPHERICA

- Number of positive events > 2.5 rms approaches 0 at LCFS (hole region)
- Lower ne discharges have more events near LCFS? >> Due to filament pileup?

L-Mode and H-mode differ

•L-mode almost 2x H-mode frequency

•H-mode decay length much shorter

•Amplitude near LCFS 5x that near wall

- Intermittent plasma objects decay radially in two ways:
 - Amplitude
 - Number of events per time

Holes and Peaks Observed

J. Boedo 2006 NSTX Results Forum

Hole Dynamics

Simulations predict holes and hole dynamics Yu, Krashenninikov, et al.

 Holes observed in NSTX (and DIII-D)

in simulations

Holes move inward ONLY in a narrow zone in NSTX! (Implications?)

Similarities and Differences w DIII-D

UC San Diego

- Similarities:
 - Holes inside LCFS
 - Peaks in SOL
 - Radial velocity and density decay with R
 - Filaments form slightly inside LCFS
 - High Vr at LCFS (~3-4 km/s), quick slowdown
- Differences:
 - Weaker Ne dependence in L-mode
 - Holes move inward only in narrow band (wide band and SOL in DIII-D)
 - L-H mode differences mostly # of events