



# **Hypervelocity Dust Injection (HDI) for NSTX internal magnetic field mapping**

Zhehui (Jeff) Wang

Collaborators: Catalin Ticos, Leonid Dorf, Glen Wurden (LANL)

Lane Roquemore and NSTX Team (PPPL)

July 27, 2006



## What is HDI?

> Use C or LiD dusts to be compatible (non-invasive) with NSTX and other high-temp. plasmas,  $R_d = 1 - 50 \mu m$ ,  $V_d$  up to 30 km/s.

 $\succ$  Dust trajectories unaffected by magnetic field,  $Q_d/M_d \ll e/M_p$ 



## **How does HDI measure internal B?**

- High resolution imaging of the emitted dust plumes formed due to ablation can provide the orientation of the local magnetic field.
- mapping of the field lines ("plasma tails of each dust") is possible when multiple plumes (~ 100 dust pieces) are recorded using fast cameras.
- ➤Dust will be accelerated to hypervelocities (up to 30 km/s) so that they can reach the core of the NSTX plasma
  C dust. 25 µm. 10 km/s



#### A coaxial plasma gun is chosen to accelerate the dust



Z. Wang, C. M. Ticos, L. A. Dorf, and G. A. Wurden, IEEE Trans. Plasma. Sci. **34**, 242 (2006).





P. Thomas, E. Igenbergs, H. Tamura, and A. B. Sawaoka, IEEE Trans. Mag. **29**, 609 (1993).



4 🔘 NSTX ——

## **HDI hardware overview**



(1 mF, 10 kV capacitor bank)





(dust dispenser with remote control)



(compact coxial plasma gun)

C. M. Ticos, Z. Wang, L. A. Dorf, and G. A. Wurden, '**A Plasmadynamic Hypervelocity Dust Injector for the National Spherical Torus Experiment**,' *Rev. Sci. Instrum.* accepted for publication (2006).



#### IV characteristics of the plasma accelerator

| Comparison of the LANL plasma gun with a German gun |                |                        |
|-----------------------------------------------------|----------------|------------------------|
| Parameters                                          | LANL           | TUM                    |
| Maximum charging voltage                            | 10 kV          | 16 kV                  |
| Capacitance                                         | 1 mF           | 0.35 mF                |
| Inductance                                          | <1  mH         | 0.33 mH                |
| Resistance                                          | 1 - 5 mΩ       | $4.65 \text{ m}\Omega$ |
| Length of coaxial accelerator                       | 0.2 - 1.0 m    | 0.16 m                 |
| Center electrode diameter                           | 1.3 cm         | 1.2 cm                 |
| Coaxial gap                                         | 1.0 cm         | 1.0 cm                 |
| Propellant                                          | $D_2$ , He gas | Al foil,               |



## **Testing of the plasma accelerator for ~ 100 shots**



- Capacitor bank energy: up to 50 kJ, maximum power ~ 140 MW.
- > Total D2 gas load, 10 to 100 TorrLiter
- Severe damage to the gun center electrode was observed.
- Second round of testing using modified coaxial gun is underway.







## **Imaging system has been tested in NSTX**



L. A. Dorf, A. L. Roquemore, G. A. Wurden, C. M. Ticos, and Z. Wang, '**Imaging system for hypervelocity dust injection diagnostic on NSTX**.' *Rev Sci. Instrum*. Accepted (2006).





# Summary

- A hypervelocity dust injection (HDI) system has been constructed at LANL for internal magnetic field line mapping in NSTX.
- The dust dispenser, imaging system, pulsed power system, and controls have been tested separately.
- Initial testing of the plasma accelerator has done.
- A second round of plasma gun operation, also with dust, is underway.
- A preliminary design review between LANL/PPPL to look at the injector specs/machine impact issues will be needed in early FY07.



