

XP616 Summary: Moveable Glow Probe Evaluation

R. Maingi*, H. Kugel * Oak Ridge National Laboratory

NSTX Results Review Princeton, NJ July 26-28, 2006

All major target questions answered in XP 616 -Moveable Glow Probe Evaluation

- Does the moveable glow probe allow a reduction of the NSTX shot cycle? Yes
 - At least down to 12.5 min (6.5-7 min HeGDC) and maybe down to 10 min. (4-4.5 min. HeGDC)
 - Shorter glows require less fueling for long pulse
- Does a lower HeGDC pressure improve discharge performance? No
 - compared 2, 3, and 4 mTorr with 7 min. HeGDC
- Is the moveable glow probe more effective than the fixed wall probe for long pulses? No
 - Each allowed 1MA 1 sec pulses in double-null

Several other conclusions from XP 616

- Plasma shape must be close to DN or biased slightly down to facilitate H-mode access (i.e. $\delta_r^{sep} \leq 3-5$ mm)
 - > Confirms conclusions from power threshold XP 505 which was at lower I_p , κ and δ
 - $> P_{LH}$ between 1 and 2 NBI srcs
- Achieved 10 double-null discharges at 1 MA with I_p flattop past 0.8 sec and many in a row
 - > Only 4 at the end of last year's run on different days
 - Conclude that wall conditions were quite good very early into the run

Reproducible long pulse discharges achieved with 6.5 min HeGDC between discharges

Page 4

Discharge performance insensitive to HeGDC pressure (2-4 mtorr range)

Similar long pulse discharges achieved with fixed and moveable HeGDC probes

Page 6

H-mode access easier as lower X-point becomes more dominant

Long pulse 1 MA discharge from this XP nearly identical to longest 1 MA discharge from last year

