### **Blob transport theory and GPI imaging analysis**

J.R. Myra, D.A. D'Ippolito, D.A. Russell *Lodestar*, D.P. Stotler, S.J. Zweben, B. P. LeBlanc, J. E. Menard *PPPL*, R. Maqueda, *Nova Photonics*, J. Boedo, *UCSD* 





- contact with experiment
- SOL broadening
- future work

presented at the NSTX Results Review, July 26 - 27, 2006 work supported by DOE grants DE-FG03-02ER54678 and DE-FG02-97ER54392

# Theory and simulations show the scaling of blob velocity vs. size (â) and collisionality regime (Λ)

Myra, Russell, D'Ippolito, Lodestar Report #LRC-06-111, (submitted to Phys. Plasmas) http://www.lodestar.com/LRCreports/TwoRegionModel\_I\_blobs.pdf



#### **Theory predicts bounds on radial blob velocity**

$$\frac{1}{\hat{a}^2} < \frac{v_r}{v_*} < \hat{a}^{1/2}$$

$$\hat{a} = \frac{a_b}{a_*} = \frac{a_b R^{1/5}}{L_{\parallel}^{2/5} \rho_s^{4/5}}$$

1 / -

$$v_* = c_s \left(\frac{a_*}{R}\right)^{1/2}$$



- hidden parameter is collisionality,  $\Lambda \Rightarrow$  parallel structure
  - sheath connected (small  $\Lambda$ ) <u>slow</u>
  - disconnected (large  $\Lambda$ ) <u>fast</u>

$$\Lambda = \frac{v_{ei}L_{|}}{\Omega_e \rho_s}$$

#### Blob velocity bounds verified from the GPI imaging analysis

Myra, D'Ippolito, Stotler, Zweben, LeBlanc, Menard, Maqueda and Boedo, Lodestar Report #LRC-06-110, June, 2006, (submitted to Phys. Plasmas) <u>http://www.lodestar.com/LRCreports/NSTX\_blobs\_GPI.pdf</u>



4

#### **Proposal: increase SOL width by X-point gas puff**



- increased parallel resistivity ( $\eta_{||} \propto \Lambda$ ) increases circuit resistance
- current loops are forced to close locally at midplane or at X-point
- blobs disconnect from divertor plate sheaths and move faster
- cold gas puff in X-pt region could accomplish this
  - directly observe v<sub>r</sub> increase with GPI
  - should increase SOL width
- disconnection, increased  $\perp$  thermal flux, related to SOL density limit physics:
  - D.A. D'Ippolito and J.R. Myra, Phys. Plasmas **13**, 062503 (2006).
- electrical disconnection vs. thermal (detachment)

## So far, large changes in blob $v_r$ (or $a_b$ ) with plasma conditions are not observed



- PDF's of  $a_b$  and  $v_r$
- automated blob finder (R. Maqueda) + selection criteria

| shot # | conf.<br>mode | edge $\overline{n}_{e}$<br>(10 <sup>13</sup> cm-3) | P <sub>nbi</sub> (MW) | blob<br>activity |
|--------|---------------|----------------------------------------------------|-----------------------|------------------|
| 112825 | L             | 4.0                                                | 0.8                   | turbulent        |
| 112814 | L             | 2.5                                                | 0.8                   | quiescent        |
| 112842 | Н             | 2.0                                                | 0.8                   | quiescent        |
| 112844 | L (DX)        | 3.0                                                | 1.7                   | turbulent        |

#### **Ideas for future work**

- statistics of blob sizes and velocities
  - measure from GPI long movies [R. Maqueda, 10,000 frames]
  - simulation using Lodestar 2D turbulence code [D. Russell, see APS 2006]
- access different collisionality regimes to observe/induce changes in v<sub>r</sub>
  - gas puff ?
- fundamental question: what  $\perp$  scale size  $a_b$  are blob born with ?

$$-\rho_s$$

$$- a_* = L_{\parallel}^{2/5} \rho_s^{4/5} R^{-1/5}$$

- $1/k_y(\gamma_{max})$
- $a_b(v_{r,max})$
- investigate correspondence rule postulate between linear theory and blobs

$$\gamma \rightarrow \frac{v_r}{a_b}, k_\perp \rightarrow \frac{1}{a_b}, L_n \rightarrow a_b$$