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Motivation:

As manufactured TFTR tile

codeposit• Erosion / codeposition
– Changes plasma facing surfaces (and plasma)
– Leads to long term tritium retention

• Dynamic retention
– Absorbs input fuel gas
– Fuels plasma from wall (density control)
– Short term tritium retention

T retention has high risk, high consequences for ITER
ITPA recognition: Experimental proposal:

“Cross-machine comparisons of pulse-by-pulse
deposition.’ DSOL-18 between NSTX and AUG

Conventional Wall Diagnostics:
• Tile / coupon samples

– Well defined spatial location
– Time integrated ‘archeology’

- no correlation with plasma events
• Gas balance (fueling & exhaust)

– Well defined time resolution
– No spatial information

These typically give widely different values
for retention (TFTR a notable exception)

QMB offers both space and time information

Model of
outgassing of
H in traps and
solution in
carbon

Strong
dependence
of outgassing
rate on H
concentration

Andrew & Pick JNM 220-222 (1995) 601
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Located at Bay H top & bottom,
7 cm ‘behind’ 7 cm wide gap in tiles

+ Bay I midplane 10 cm ‘behind’ limiter.

Exquisitely sensitive to changes of mass
smaller than one monolayer

• Quartz crystal oscillates at ~ 5.9 MHz,
exact frequency depends on mass and
on temperature.

• Temperature effect subtracted
using thermocouple data.
density 1.6 g/cm3 assumed.

• Deposition inferred from change in
frequency (measured to ~0.1 Å,
~0.1 Hz)

• Data accumulated continuously 24/7.

Quartz

Crystal

Thermocouple

NSTX quartz microbalances:

Quartz

Crystal
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Direct real time measurements of lithium deposition

3 Li evaporations
XP 601
9 June 2006

H. Kugel talk.

Y-axis zero arbitrary
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XP604 results challenged erosion / deposition picture

Change in asymptote with duration and stored energy

‘memory’ effect

NBI LSN high triangularity    LSN ohmic low triang.

XP604 Aims:
• Does 30 min GDC influence strong

1st shot of day deposition ?
• Does erosion / deposition depend

on Ip flattop duration ?
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 Result:
• No clear change without GDC
• No clear effect of pulse duration
• No ‘staircase’ pattern
• ‘Memory’ effect observed
• Change in paradigm needed !
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First four discharges are similar:

Mass change over 24 hours
 Plasma discharge times marked by transients
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General Features:
• Discharges show transient rise

followed by decay.
• Decay time exceeds thermal

equilibration time of qmb
• Large stepup in mass on 1st shot of

day
– mass gain exceeds  28 minute

boronization
Effect independent of:
–  prior He glow discharge,
–  discharge type: Ohmic (115476)

or NBI, He or D
• Some discharges show longer term

step-up or step-down in asymptotic
level.

• Slow mass loss at end of day.

First shot of day effect:

(Y-axis zero
point arbitrary)
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First four discharges are similar:
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Behavior explained by dynamic retention of D

Look at numbers:
Compare fueling to deposition:
All four discharges 115467, 48, 49, 50
have:
   56 torr-l CS mid fueling
   13 torr-l Bay J lower fueling
   2e20 D from 4 MW 0.5s NBI
Total fuel = 5e21 D atoms or 0.017g

Interior surface area of NSTX
= 40.66 m2  = 4e21 Å2

Fueling equivalent to about one D atom per Å2 or 0.04 !g/cm2

if smeared over NSTX interior and not pumped.
Initial mass gain of qmbs is " 0.35 !g/cm2 i.e. 10 x higher.

CONCLUDE: Dynamic retention concentrated in plasma shadowed regions.

Four similar discharges
Overnight outgassing desaturates wall.
D implanted on 1st shot adds mass.
Outgassing between shots too slow 
to desaturate wall.
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Compare material loss to exhaust pumpout:
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• Mass loss continues for ~ 1 h after last
discharge

• No glow discharge, turbopumps only
• Outgassing of deuterium evident in ion

gauge and rga data.

• Average mass loss from 17h - 18 h
is 0.11 !g/cm2

• RGA shows exhaust mostly D (>70%)
• Mass of deuterium pumped by turbopumps

from 17h - 18h is ~ 984 !g
•  1 h exhaust is equivalent to mass loss

of  0.1 !g/cm2 over 1 m2

Small area compared to 40 m2 of vessel
interior.

• Suggests dynamic retention occurs over only
a small fraction of the NSTX vessel area
(consistent with gas uptake on first shot of
day)

End of day behavior supports
dynamic retention:
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Erosion / deposition is small compared to dynamic
retention (and boronization/lithiumization)

Date H bottom H top 
-0.3 2.6
4.2 2.1
-4.5 0.5

-0.0028 0.0003
-0.0051 0.0006

-0.32 0.03
average rate
average rate

 µg/cm2
 µg/cm2

change April 23 - Sept 13 2005
boronization
plasma only
average rate

 µg/cm2
 µg/cm2/shot
 µg/cm2/sec
 Å/s
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• H-sensor being developed to measure H flux to wall (Bastasz).
• QMB’s offer time and space resolved data on erosion, deposition and

dynamic retention in plasma shadowed regions - unique opportunity to
bridge surface analysis and gas balance data and validate models of
tritium retention.

• Dynamic retention observed in mass gain after 1st shot-of-day and
transient material loss after discharges.

• Step up or step down in asymptotic level observed, depending on
plasma shape including shape of prior discharges (memory effect),
plasma energy and duration and other parameters.

• Quantative comparison indicates mass gain / loss at measured rate
over ~10% of the vessel area can account for D fueled and pumped.

• Long term erosion / deposition small compared to dynamic retention at
these locations.

Conclusions:
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