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Accumulated data strongly suggests OH/TF interaction creates error field
which varies throughout shot even with constant plasma parameters
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Recent radial fleld measurements at ends of solenoid
confirm large up/down asymmetric local error field

 Vacuum shot: 53kA |- + OH waveform from 800kA long-pulse shot
Lower field close to expected value = small relative motion?

Upper field significantly different = 50-70G local EF

This data not included in shift/tilt model yet...
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Accurate modeling of n=1 By, error field from OH+TF
requires inclusion of time lag and polarity dependence

 Developed TF model allowing both shift and tilt

» Multiple filter time-constants needed to capture time lags
« Accurate prediction of EF at sensor = hope for predicting EF in plasma
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Methodology for predictive EFC for OHXTF:

Developed PCS algorithm to minimize EF (empirical rotation damping) at g=3
surface by weighting m=0 against m=2 components of EF

Allow for rectification and time-lag

Track g=3 radius during shot > MAY NOT WORK for different q evolution

119632 error field compensation ]
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Tracking OH waveform better than simple SPA pre-programming

e Without feedback, longest/highest 3, achieved with OHXTF predictive EFC

119615 - Pre-programmed linear ramp must guess at OH evolution = not as good
119622
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EFC helps to sustain rotation

- Scan of EFC amplitude finds that optimal proportionality value (119649) results in
higher rotation and beta than shot with non-optimal value (119645)
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Compared feedback driven by mode-ID from BP sensors
to predictive error field correction (PEFC) from OHXTF

DNsTX
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Time-averaged SPA currents from feedback equivalent to
un-averaged feedback = correcting RFA from stable RWM

DNsTX
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Mode-ID feedback alone not robust early = OHXTF needed early, but
Turning OHXTF correction OFF late gave best performance

Plasma current Normalized toroidal beta
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« OHXTF t=0.1-0.4s, no sensor-based feedback * OHXTF t=0.1-end, feedback on after t=0.5s
« OHXTF t=0.1-0.4s, feedback on after t=0.5s * OHXTF 1=0.1-0.8s, feedback on after t=0.5s
« OHXTF t=0.1-end of shot, no feedback 2120663 & 120668 imply late OHXTF is not optimized, and

may be due to non-linearity of OHXTF field late in shot
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All SPA current off after t=900ms -> increased rotation

@NsTX
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Find OHXTF correction is needed early in shot,
but hinders performance late in shot — why?

* Measured OHXTF error field
(black) has “break-in-slope” near
800ms which present PCS
algorithm (green) cannot match -

leading to degraded
compensation late in shot?

* Algorithm was designed using
“short pulse” waveforms which
can be fit much better.
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Upper radial error field increases non-linearly with
OHXTF current product =» threshold effect?

Note change in slope of deviation from expected value
- OHXTF force interacting with TF/OH thermal expansion?
- VERY difficult to model for predictive EF correction

Slope changes at t=0.7-0.9s
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Summary

QDNSTX

Latest EF hypothesis: Field from OH lead loop pushes on TF
bundle, bundle tilts/bends, causes n=1 EF in main chamber

Developed predictive OHXTF EFC model in PCS — increased
discharge duration in otherwise disruptive target

Implemented real-time mode-ID and feedback, optimized
phase and gain, compared/added to PEFC

— Doubled flat-top duration of target discharge

— Time-averaged currents give same response 2 RFA correction

PEFC likely failing at end of shot due to non-linear TF motion
— PEFC algorithm also g-profile dependent, and marginal to start with...
— RFA also beta-dependent — likely a combination of both effects
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